24/7 Space News
OUTER PLANETS
Newly discovered form of salty ice could exist on surface of extraterrestrial moons
This satellite image shows white streaks across the surface of Ganymede, the largest of Jupiter's moons. The discovery of new types of salty ice could explain the material in these streaks and provide clues on the composition of Ganymede's ice-covered ocean.
Newly discovered form of salty ice could exist on surface of extraterrestrial moons
by Staff Writers
Seattle WA (SPX) Feb 22, 2023

The red streaks crisscrossing the surface of Europa, one of Jupiter's moons, are striking. Scientists suspect it is a frozen mixture of water and salts, but its chemical signature is mysterious because it matches no known substance on Earth.

A team led by the University of Washington may have solved the puzzle with the discovery of a new type of solid crystal that forms when water and table salt combine in cold and high-pressure conditions. Researchers believe the new substance created in a lab on Earth could form at the surface and bottom of these worlds' deep oceans.

The study, published Feb. 20 in the Proceedings of the National Academy of Sciences, announces a new combination for two of Earth's most common substances: water and sodium chloride, or table salt.

"It's rare nowadays to have fundamental discoveries in science," said lead author Baptiste Journaux, a UW acting assistant professor of Earth and space sciences. "Salt and water are very well known at Earth conditions. But beyond that, we're totally in the dark. And now we have these planetary objects that probably have compounds that are very familiar to us, but in at very exotic conditions. We have to redo all the fundamental mineralogical science that people did in the 1800s, but at high pressure and low temperature. It is an exciting time."

At cold temperatures water and salts combine to form a rigid salted icy lattice, known as a hydrate, held in place by hydrogen bonds. The only previously known hydrate for sodium chloride was a simple structure with one salt molecule for every two water molecules.

But the two new hydrates, found at moderate pressures and low temperatures, are strikingly different. One has two sodium chlorides for every 17 water molecules; the other has one sodium chloride for every 13 water molecules. This would explain why the signatures from the surface of Jupiter's moons are more "watery" than expected.

"It has the structure that planetary scientists have been waiting for," Journaux said.

The discovery of new types of salty ice has importance not just for planetary science, but for physical chemistry and even energy research, which uses hydrates for energy storage, Journaux said.

The experiment involved compressing a tiny bit of salty water between two diamonds about the size of a grain of sand, squeezing the liquid up to 25,000 times the standard atmospheric pressure. The transparent diamonds allowed the team to watch the process through a microscope.

"We were trying to measure how adding salt would change the amount of ice we could get, since salt acts as an antifreeze," Baptiste said. "Surprisingly, when we put the pressure on, what we saw is that these crystals that we were not expecting started growing. It was a very serendipitous discovery."

Such cold, high-pressure conditions created in the lab would be common on Jupiter's moons, where scientists think 5 to 10 kilometers of ice would cover oceans up to several hundred kilometers thick, with even denser forms of ice possible at the bottom.

"Pressure just gets the molecules closer together, so their interaction changes - that is the main engine for diversity in the crystal structures we found," Journaux said.

Once the newly discovered hydrates had formed, one of the two structures remained stable even after the pressure was released.

"We determined that it remains stable at standard pressure up to about minus 50 C. So if you have a very briny lake, for example in Antarctica, that could be exposed to these temperatures, this newly discovered hydrate could be present there," Journaux said.

The team hopes to either make or collect a larger sample to allow more thorough analysis and verify whether the signatures from icy moons match the signatures from the newly discovered hydrates.

Two upcoming missions will explore Jupiter's icy moons: The European Space Agency's Jupiter Icy Moons Explorer mission, launching in April, and NASA's Europa Clipper mission, launching for October 2024. NASA's Dragonfly mission launches to Saturn's moon Titan in 2026. Knowing what chemicals these missions will encounter will help to better target their search for signatures of life.

"These are the only planetary bodies, other than Earth, where liquid water is stable at geological timescales, which is crucial for the emergence and development of life," Journaux said. "They are, in my opinion, the best place in our solar system to discover extraterrestrial life, so we need to study their exotic oceans and interiors to better understand how they formed, evolved and can retain liquid water in cold regions of the solar system, so far away from the sun."

Research Report:On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions

Related Links
University of Washington
The million outer planets of a star called Sol

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
OUTER PLANETS
New aurorae detected on Jupiter's four largest moons
Maunakea HI (SPX) Feb 17, 2023
Astronomers using W. M. Keck Observatory on Maunakea in Hawai?i have discovered that aurorae at visible wavelengths appear on all 4 major moons of Jupiter: Io, Europa, Ganymede, and Callisto. Using Keck Observatory's High-Resolution Echelle Spectrometer (HIRES) as well as high-resolution spectrographs at the Large Binocular Telescope and Apache Point Observatory, a team led by Caltech and Boston University observed the moons in Jupiter's shadow so that their faint aurorae, which are caused by the gas gi ... read more

OUTER PLANETS
Russia claims Progress leak caused by an "external impact"

Russian rescue mission for three space station astronauts set this week

Russia launches crew-less Soyuz to ISS as replacement

Farming on the Moon

OUTER PLANETS
World's first 3D-printed rocket Terran 1 is ready for its maiden flight

SpaceX launches Falcon 9 rocket from Florida, part of Inmarsat program

SpaceX Endeavour's crew arrive at KSC ahead of launch

Flight Crew Arrives at NASA's Kennedy Space Center for Crew-6 Mission

OUTER PLANETS
Perseverance set to begin third year on Mars at Jezero Crater

Drilling the Marker Band Again: Sols 3750-3751

Another Busy Day on Mars: Sol 3749

Better tools needed to determine ancient life on Mars

OUTER PLANETS
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

OUTER PLANETS
New research models concept for data transport using train of satellites

New transmitter design for small satellite constellations improves signal transmission

Vast acquires launcher to accelerate growth

Luxembourg taps into SES's O3b mPOWER for defense and disaster recovery

OUTER PLANETS
Low power Ka-band transmitters on Earth observation satellites

Radiation-resistant Ka-band radio for LEO constellation offers speeds Beyond 5G

Redwire partners with Starfish Space for Otter Pup satellite docking mission

Exploring the Valley of the Kings with radar

OUTER PLANETS
CARMENES project boosts the number of known planets in the solar neighbourhood

"Forbidden" planet orbiting small star challenges gas giant formation theories

Very Large Telescope captures direct images of bright exoplanet

Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?

OUTER PLANETS
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.