. 24/7 Space News .
TECH SPACE
NUS scientists developed super sensitive magnetic sensor
by Staff Writers
Singapore (SPX) Nov 04, 2015


File image.

Researchers from the National University of Singapore (NUS) have developed a new hybrid magnetic sensor that is more sensitive than most commercially available sensors. This technological breakthrough hails opportunities for the development of smaller and cheaper sensors for various fields such as consumer electronics, information and communication technology, biotechnology and automotive.

The invention, led by Associate Professor Yang Hyunsoo of the Department of Electrical and Computer Engineering at NUS' Faculty of Engineering, was published in the journal Nature Communications in September 2015.

When an external magnetic field is applied to certain materials, a change in electrical resistance, also known as magnetoresistance, occurs as the electrons are deflected. The discovery of magnetoresistance paved the way for magnetic field sensors used in hard disk drives and other devices, revolutionising how data is stored and read.

In the search for an ideal magnetoresistance sensor, researchers have prized the properties of high sensitivity to low and high magnetic fields, tunability, and very small resistance variations due to temperature.

The new hybrid sensor developed by the team led by Assoc Prof Yang, who is also with the NUS Nanoscience and Nanotechnology Institute (NUSNNI) and the Centre for Advanced 2D Materials (CA2DM) at NUS Faculty of Science, may finally meet these requirements. Other members of the interdisciplinary research team include Dr Kalon Gopinadhan of NUSNNI and CA2DM; Professor Thirumalai Venkatesan, Director of NUSNNI; Professor Andre K. Geim of the University of Manchester; and Professor Antonio H. Castro Neto of the NUS Department of Physics and Director of CA2DM.

The new sensor, made of graphene and boron nitride, comprises a few layers of carrier-moving channels, each of which can be controlled by the magnetic field. The researchers characterised the new sensor by testing it at various temperatures, angles of magnetic field, and with a different pairing material.

Dr Kalon said, "We started by trying to understand how graphene responds under the magnetic field. We found that a bilayer structure of graphene and boron nitride displays an extremely large response with magnetic fields. This combination can be utilised for magnetic field sensing applications."

Compared to other existing sensors, which are commonly made of silicon and indium antimonide, the group's hybrid sensor displayed much higher sensitivity to magnetic fields. In particular, when measured at 127 degree Celsius (the maximum temperature which most electronics products are operated at), the researchers observed a gain in sensitivity of more than eight-fold over previously reported laboratory results and more than 200 times that of most commercially available sensors.

Another breakthrough in this research was the discovery that mobility of the graphene multilayers can be partially adjusted by tuning the voltage across the sensor, enabling the sensor's characteristics to be optimised. This control gives the material an advantage over commercially available sensors. In addition, the sensor showed very little temperature dependence over room temperature to 127 degree Celsius range, making it an ideal sensor suitable for environments of higher temperature.

Meeting industry demand
The magnetoresistance sensor industry, estimated to be worth US$1.8 billion in 2014, is expected to grow to US$2.9 billion by the year 2020. Graphene-based magnetoresistance sensors hold immense promise over existing sensors due to their stable performance over temperature variation, eliminating the necessity for expensive wafers or temperature correction circuitry. Production cost for graphene is also much lower than silicon and indium antimonide.

Potential applications for the new sensor include the automotive industry, where sensors in cars, located in devices like flow meters, position sensors and interlocks, are currently made of silicon or indium antimonide. For instance, when there is a change in temperature due to the car's air-conditioner or heat from the sun, properties of the conventional sensors in the car change as well.

To counter this, a temperature correction mechanism is required, incurring additional production cost. However, with the team's new hybrid sensor, the need for expensive wafers to manufacture the sensors, and additional temperature correction circuitries can be eliminated.

"Our sensor is perfectly poised to pose a serious challenge in the magnetoresistance market by filling the performance gaps of existing sensors, and finding applications as thermal switches, hard drives and magnetic field sensors. Our technology can even be applied to flexible applications," added Assoc Prof Yang.

The research team has filed a patent for the invention. Following this proof-of-concept study, the researchers plan to scale up their studies and manufacture industry-size wafers for industrial use.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National University of Singapore
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Chipping away at the secrets of ice formation
Washington DC (SPX) Nov 04, 2015
Making ice to chill our drinks is easy enough, but surprisingly, the details of that seemingly simple process are still not well understood. Now scientists report in the Journal of the American Chemical Society that they have unlocked some of ice's mysteries while debunking a major assumption about the process. The findings could help us better understand how water freezes, which has significant ... read more


TECH SPACE
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

TECH SPACE
Signs of Acid Fog Found on Mars

NASA Chief: We're Closer to Sending Humans on Mars Than Ever Before

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Martian skywatchers provide insight on atmosphere, protect orbiting hardware

TECH SPACE
NASA Armstrong Hosts Convergent Aeronautics Solutions Showcase

Got the right stuff? NASA is hiring astronauts

Studying Unidentified Aerial Phenomena Scientifically with UFODATA

Faster optimization

TECH SPACE
China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

TECH SPACE
Space Station offers valuable lessons about life support systems

Space station marks 15 years inhabited by astronauts

Space Station Investigation Goes With the Flow

NASA astronauts get workout in marathon spacewalk

TECH SPACE
Russian Space Agency signs contracts for 31 commercial launches in 2015

Russia to refurbish satan missiles as cheaper launchers

Full-Scale Drills at Russia's Vostochny Cosmodrome to Start in Two Weeks

Developing Commercial Spaceports in the USA

TECH SPACE
Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

TECH SPACE
NUS scientists developed super sensitive magnetic sensor

Chipping away at the secrets of ice formation

Robotic Eyes to Assist Satellite Repairs in Orbit

Space Junk









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.