. 24/7 Space News .
Space Station Investigation Goes With the Flow
by Andrea Dunn for ISS Science News
Houston TX (SPX) Oct 29, 2015

Samantha Cristoforetti conducts plethysmography and pulmonary function system measurements during Brain Drain investigation operations during Expedition 42 aboard the International Space Station. Image courtesy NASA. For a larger version of this image please go here.

On Earth, blood flows down from a person's brain back toward the heart thanks in part to gravity, but very little is known about how this flow happens in microgravity. Many crew members aboard the International Space Station report headaches and other neurological symptoms in space, which may be related to microgravity's effect on cerebral blood circulation.

The Drain Brain investigation, which was completed in July 2015, measured the blood flow from the brain to the heart of one crew member to help researchers better understand how the flow is affected by microgravity and which physical processes in the body can compensate for the lack of gravity, ensuring blood flows properly.

Cerebral blood circulation is one of the major regulators of human brain physiology. Due to the variability and complexity of the cerebral venous system (the collection of veins in and around the brain), scientists currently lack an approach for reliably and objectively measuring the cerebral venous return (the blood flow from the brain to the heart through the jugular veins).

Scientists do know that, on Earth, the return is influenced by gravity when subjects are upright, and by respiration, or breathing, when subjects are laying down. However, very little is known about the mechanisms ensuring blood outflow from the brain in microgravity.

In an effort to measure this outflow, a research team led by Paolo Zamboni, MD, University of Ferrara in Italy, developed a strain-gauge plethysmography system to investigate these processes. The instrumentation was used aboard the space station both to study cerebral venous return in microgravity conditions, and to properly understand the phenomena of physiological adaptation.

Strain-gauge plethysmography is a non-invasive technique that measures variations in blood flow from the brain to the heart using a stretch sensor encircling the neck and the upper and lower extremities. The instrument was developed by the team and used for the first time in 2012 to assess the cerebral outflow comparing healthy subjects with patients affected by multiple sclerosis.

"I was interested in measuring venous outflow, but current echo Doppler methodologies and other diagnostic systems are affected by very low repeatability, technical problems, and operator dependency," said Zamboni. "The challenge was to invent a non-invasive device with good repeatability."

The device is easy to use, not operator-dependent, non-invasive and portable. The protocol was implemented by high-resolution ultrasound video-clips showing in real-time the pulsation, or throbbing, of the carotids and jugulars, synchronized with electrical activity of the heart as illustrated in an electrocardiogram. Data from this investigation may contribute a more comprehensive picture of the heart-brain interaction in microgravity conditions.

During two pre-flight sessions, four in-flight sessions and two post-flight sessions, European Space Agency (ESA) astronaut Samantha Cristoforetti was monitored using the plethysmographs during normal activity, muscular activity and respiratory activity.

She described her experience in a January 2015 blog post: "While wearing these collars on my neck, arm and leg, I performed a series of breaths at 70% of my lung capacity, either remaining still or stretching and flexing my hand or my ankle. While doing that, I was breathing into our Pulmonary Function System and the software, via a graphic interface, was giving me instructions on when to start exhaling or inhaling."

This allowed investigators to measure her cardiac pulse, the inflow of blood to the brain and the jugular pulse (the major outflow from the brain to the heart).

Zamboni incorporated the respiration and muscular activities into the Drain Brain protocol to better understand whether physical processes like these can compensate for the lack of gravity to ensure blood flows properly. While the instrumentation and protocol were successful, the investigation included only one test subject, so Zamboni recognizes the need to recruit additional subjects for future studies to ensure repeatability and to gather additional data.

"We need [to study] at least 15-20 subjects to ensure the data we gather is robust and so we can be more confident in our conclusions," said Zamboni.

The investigation's success could help scientists develop countermeasures that will influence the future of human spaceflight on long-duration missions.

It could also impact the medical community on Earth, especially for physicians treating patients with chronic heart failure and neurological disorders. The strain-gauge plethysmography, complemented by ultrasound analysis of the jugular pulse, could potentially make measuring blood flow in these sets of patients much easier, allowing patients and doctors to better go with the flow.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Drain Brain at ISS
Station at NASA
Station and More at Roscosmos
S.P. Korolev RSC Energia
Watch NASA TV via Space.TV
Space Station News at Space-Travel.Com

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NASA astronauts get workout in marathon spacewalk
Miami (AFP) Oct 28, 2015
Two US astronauts got quite a workout Wednesday during a spacewalk that lasted more than seven hours in order to do upgrades and maintenance at the orbiting International Space Station, NASA said. The spacewalk was the first ever for veteran Scott Kelly, who is in the midst of a year-long stint at the ISS, and for his colleague, flight engineer Kjell Lindgren. It lasted seven hours and 1 ... read more

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

NASA Chief: We're Closer to Sending Humans on Mars Than Ever Before

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Martian skywatchers provide insight on atmosphere, protect orbiting hardware

Landing site recommended for ExoMars 2018

Charles Elachi to retire as JPL Director

From science fiction to reality - sonic tractor beam invented

Study solves mysteries of Voyager 1's journey into interstellar space

NASA Marks Completion of Test Version of Key SLS Propulsion System

China to set up civil satellite systems by 2020

The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Space Station Investigation Goes With the Flow

NASA astronauts get workout in marathon spacewalk

Between the Ears: International Space Station Examines the Human Brain

High-Tech Methods Study Bacteria on the International Space Station

Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

Did Jupiter Expel A Rival Gas Giant

Scientists simulate 3-D exotic clouds on an exoplanet

Spirals in dust around young stars may betray presence of massive planets

The Exoplanet Era

U.S. Air Force awards Southwest Research Institute development contract

New System Giving SMAP Scientists the Speed They Need

Virtual Reality System to Fly in Space Brings Non-Astronauts Aboard ISS

How a flying bat sees space

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.