. | . |
NRL CIRCE spacecraft to be part of historic UK launch by Staff Writers Washington DC (SPX) Jun 08, 2022
A joint U.S. Naval Research Laboratory (NRL)/ U.K. Defence Science and Technology Laboratory (Dstl) experiment is preparing to measure Earth's ionosphere and particle radiation environment as part of the Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE) mission. Space Systems Command is partnering with Virgin Orbit National Systems, a U.S.-incorporated, wholly-owned subsidiary to Virgin Orbit, to launch CIRCE. The satellites, which contain twin 6U CubeSats, will fly in a circular orbit at 555 km (344 miles) altitude in a lead/trail formation 300-500 km (186-310 miles) apart in the same orbit plane to measure Earth's ionosphere and particle radiation environment. "The NRL CIRCE Team is thrilled to be a part of this joint U.S/U.K. mission," Andrew Nicholas, CIRCE's Principal Investigator said. "We are looking forward to a successful launch out of Spaceport Cornwall, and are excited to continue work with our U.K. partners once the CIRCE science data starts flowing." CIRCE pushes the boundaries of the CubeSat platform technology, challenging the size, weight and power constraints of the platform as well as integration and complex concepts of operations. "The CIRCE spacecraft are the size of a shoebox and we've managed to sandwich five sensors in each of them," Nicholas said. "So they are very compact and pretty laden with technology and it is all really tightly integrated in there." NRL developed the Triple Tiny Ionospheric Photometer (Tri-TIP) to measure nighttime O+ 135.6nm airglow emissions in the atmosphere. Each CIRCE CubeSat will have two Tri-TIPs onboard, configured to look along coordinated lines of sight to perform ionospheric tomography in the orbital plane. The U.K. contribution to CIRCE is the In situ and Remote Ionospheric Sensing (IRIS) suite, complementary to NRL sensors, and comprising three highly miniaturized payloads. One IRIS suite will be flown on each satellite, and incorporates an ion/neutral mass spectrometer, a tri-band global positioning system receiver for ionospheric remote sensing, and a radiation environment monitor. NRL Sensor Development and Applications section of the Space Science Division contracted with Blue Canyon Technologies out of Boulder, Colorado to build and integrate the two CIRCE spacecraft. "With most of the program being completed during the global pandemic we are now at the point where we have all the payloads integrated," Nicholas said. "The spacecraft has been through testing and we are now in a storage period awaiting the launch call up." During the life of its mission, CIRCE will help researchers better understand how the ionosphere is changing day-to-day, hour-to-hour and even minute-to-minute, which is important to the Navy, especially for over the horizon communications and radar. "In addition, if you really want to understand the ionosphere tomorrow, you have to understand the thermosphere today, so it is great that we have the INMS from the U.K. to measure the neutral composition as well." Nicholas said. The U.K. instrument suite showcases academic collaboration, with payloads provided by University College London's Mullard Space Science Laboratory, University of Bath, and Surrey Satellite Technology Limited (SSTL), drawing on expertise from University of Surrey. "We are delighted to be working with NRL on the CIRCE mission, and proud of the valuable contribution made by our UK payload providers," Gemma Attrill, Ph.D., Dstl's CIRCE lead, said. "The data returned by CIRCE will provide unparalleled temporal and spatial detail regarding the dynamic behavior of the ionosphere, allowing us to develop our understanding of system impacts relevant to both defense and the civil sector." CIRCE is scheduled to launch during the United Kingdom's first commercial space mission from Spaceport Cornwall located at Newquay Airport in Cornwall, England this summer.
CIRCE space weather suite announced for first UK satellite launch London, UK (SPX) Jun 08, 2022 The Defence Science and Technology Laboratory's (Dstl) miniaturised space weather instrumentation suite will be one of the payloads aboard Virgin Orbit which is targeting the first UK satellite launch this summer from Spaceport Cornwall in Newquay. Virgin Orbit's Launcher One rocket takes off horizontally, carried aloft by a modified Boeing 747 jet, named Cosmic Girl. The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) satellite mission comprises two 6U cube-satellites that will ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |