. 24/7 Space News .
STELLAR CHEMISTRY
NASA to launch two more sounding rockets from northern Australia in July
by Mara Johnson-Groh for GSFC News
Greenbelt MD (SPX) Jun 29, 2022

The closest star system to Earth is the famous Alpha Centauri group. At a distance of 4.3 light-years, this system is made up of the binary formed by the stars Alpha Centauri A and Alpha Centauri B, plus the faint red dwarf Alpha Centauri C, also known as Proxima Centauri. File image showing Alpha Centauri A and B with a possible planet visible.

On the heels of a successful launch on June 26, NASA is set to launch two more sounding rockets from northern Australia during the first half of July. These missions will help astronomers understand how starlight influences a planet's atmosphere, possibly making or breaking its ability to support life as we know it.

The two missions will look at Alpha Centauri A and B - two Sun-like stars near our own - in extreme- and far-ultraviolet light. Ultraviolet light, which has wavelengths shorter than the light that is visible to the human eye, is a critical factor in the search for life. A little bit of ultraviolet light can help form the molecules necessary for life, but too much can erode an atmosphere, leaving behind an inhospitable planet.

"Ultraviolet radiation from the Sun played a role in how Mars lost its atmosphere and how Venus turned into a dry, barren landscape," said Brian Fleming, astronomer at the University of Colorado, Boulder, and principal investigator for one of the missions, the Dual-channel Extreme Ultraviolet Continuum Experiment, or DEUCE. "Understanding ultraviolet radiation is extremely important to understanding what makes a planet habitable."

Of the over 5,000 exoplanets known throughout across the galaxy, only Earth is known to host life. In the search for other exoplanets that could host life as we know it, astronomers have focused on planets that orbit in the habitable zone - defined as the distances from a star where a planet's surface temperature could support water.

"But that's a rudimentary way of characterizing habitability," Fleming said.

While water is one part of making a planet hospitable, for a planet to support an Earth-like biosphere, it also needs an atmosphere. If the habitable zone is bathed in too much ultraviolet radiation, any water vapor in the upper atmosphere could escape, quickly drying out the planet. Atmospheres can also be eroded by radiation and extreme flares from a planet's host star, exposing the surface to harsh ultraviolet radiation, which can break apart molecules like DNA.

But just how much ultraviolet radiation is emitted by different types of stars is poorly known. Without accurate knowledge, astronomers can't accurately predict which planets might host life.

"We need to understand the stars so that we can understand any planets we find there," said Kevin France, astronomer at the University of Colorado, Boulder, and principal investigator for the Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars, or SISTINE, mission.

DEUCE and SISTINE will take these important measurements of ultraviolet light to help narrow the search for habitable planets. Launching only a week apart, the two missions will work together to get a full picture of the ultraviolet light coming from Alpha Centauri A and B.

The researchers selected Alpha Centauri A and B because they can serve as a useful reference against which to calibrate observations from the Sun - the only other star for which we have complete ultraviolet measurements. Ultraviolet light is absorbed by dust and gas in space. This makes it nearly impossible to measure ultraviolet light from more distant stars at the level needed for these types of analyses. The Alpha Centauri system, however, is just 4.3 light-years away, close enough that much of its ultraviolet light reaches us before being absorbed.

Ultraviolet light is also mostly blocked by Earth's atmosphere, so researchers have to send instruments into space to measure it. Since the full range of ultraviolet light can't be measured with a single instrument, DEUCE will measure the shorter, extreme-ultraviolet wavelengths and SISTINE will measure the longer, far-ultraviolet wavelengths. The wavelength coverages will slightly overlap so that the collected data can be calibrated and used as one dataset. This information will then be used to create models that can help astronomers assess which other star systems could support habitable environments.

"Looking at Alpha Centauri will help us check if other stars like the Sun have the same radiation environment or if there are a range of environments," France said. "We have to go to Australia to study it because we can't easily see these stars from the northern hemisphere to measure them."

SISTINE is scheduled for launch July 4 and DEUCE on July 12.

The two missions, aboard NASA two-stage Black Brant IX sounding rockets, will launch from the Arnhem Space Center in East Arnhem Land in Australia's Northern Territory. The Arnhem Space Center is owned and operated by Equatorial Launch Australia, or ELA, on the land of the Yolngu, the Traditional Custodians and Landowners.

Along with a third mission, the X-ray Quantum Calorimeter, or XQC, which flew June 26, these scientific studies can only be conducted from the southern hemisphere.


Related Links
Sounding Rockets at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Exploring globular clusters with the lens of asteroseismology
Bologna, Italy (SPX) Jun 23, 2022
Asteroseismology - one of the most fascinating and sophisticated methods for measuring the mass of stars, and by extension, their age - can also be successfully used to reveal the characteristics of the stars within globular clusters: very large groups of stars (in the order of hundreds of thousands) condensed in a relatively small space and all at approximately the same distance from us. This is shown by a study - published in Astronomy and Astrophysics - carried out by an international team of a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
How scientist proposed a novel Kalman filter for target tracking in space

NASA program brings big benefits to Big Ten School

Rocket Lab's Lunar Photon completes 6th orbital raise preps for final Earth-escape burn

Rocket Lab launches CAPSTONE microsat to test new lunar orbit design for NASA

STELLAR CHEMISTRY
SpaceX launches first C-band television broadcast satellite into space for SES

Relativity and Oneweb sign multi-launch agreement for Terran R

NASA, SpaceX target new launch date for commercial cargo mission

Bacteria for blastoff: Using microbes to make supercharged new rocket fuel

STELLAR CHEMISTRY
Eyeing Kukenan - Sols 3519-3524

Historic Mars mission completes all preset tasks

My Favorite Martian Image: 'Enchanted' Rocks at Jezero Crater

Help NASA scientists find clouds on Mars

STELLAR CHEMISTRY
Shenzhou XIII astronauts doing well after returning to Earth

Chinese official says its Mars sample mission will beat NASA back to Earth

China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

STELLAR CHEMISTRY
SES-22 set to launch on Falcon 9 June 29

Inmarsat report calls for enhanced debris mitigation and stronger regulations in space

Beyond Gravity launches its own start-up program "Launchpad"

A modern space race needs to be built on sustainability

STELLAR CHEMISTRY
GMV cements leadership in collision avoidance operations automation and coordination in Europe

A bright future for 3D printing

Turion Space and Exolaunch announce launch agreement for DROID 001 aboard Falcon 9

Pro-China online network targets mineral firms: report

STELLAR CHEMISTRY
AI experts called on to join the hunt for exoplanets

Life in the Earth's interior as productive as in some ocean waters

Long-term liquid water also on non-Earth-like planets

Ancient microbes may help us find extraterrestrial life forms

STELLAR CHEMISTRY
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.