. | . |
Mysterious behavior of quantum liquid elucidated, a world first by Staff Writers Osaka, Japan (SPX) Jan 27, 2016
In cooperation with researchers from Osaka City University and the University of Tokyo, researchers at Osaka University, through their precise measurement of current fluctuations in quantum liquids in an artificial atom created by nanotechnology, succeeded in elucidating theoretically-predicted behavior of quantum liquid in a non-equilibrium regime. Quantum liquids are macroscopic ensembles of interacting particles dense enough for quantum statistics to manifest itself. For fermions, it is known that, around equilibrium, all the quantum liquids can be universally described within a single theory, so called Landau Fermi liquid theory. The central idea is that they can be treated as an ensemble of free "quasi-particles". This conceptual framework has been applied to many physical systems, such as liquid helium 3, normal metals, heavy fermions, neutron stars, and cold gases, where their properties in the linear-response regime have been successfully described by the theory. However, non-equilibrium properties beyond this regime have still to be established and remain a key issue of many-body physics. Kensuke Kobayashi, Meydi Ferrier, Tomonori Arakawa, Tokuro Hata, Ryo Fujiwara at Osaka University in collaboration with Akira Oguri at Osaka City University and Rui Sakano at the University of Tokyo together with Raphaelle Delagrange, Raphael Weil, Richard Deblock at Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Universite Paris Saclay show a precise experimental demonstration of Landau Fermi-liquid theory extended to the non-equilibrium regime in a 0-D system. Combining transport and sensitive current noise measurements, they have identified the SU(2) and SU(4) symmetries of quantum liquid in a carbon nanotube tuned in the Kondo regime. They find that, while the electronic transport is well described by the free quasi-particle picture around equilibrium just as the Fermi liquid theory tells us, a two-particle scattering process due to residual interaction shows up in the non-equilibrium regime. The result, in perfect agreement with theory, provides a strong quantitative experimental background for further developments of the many-body physics. Moreover, they discovered a new scaling law for the effective charge, signaling as-yet-unknown universality in the non-equilibrium regime. This achievement will open up a new way to explore quantum many-body physics through fluctuations, which stands on firm ground even out of equilibrium beyond the conventional Landau Fermi liquid theory. The newly discovered universality would trigger a vast theoretical effort.
Related Links Osaka University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |