. 24/7 Space News .
TECH SPACE
Gloop from the deep sea
by Staff Writers
Zurich, Switzerland (SPX) Jan 21, 2016


ETH scientists are researching the unusual secretions of the hagfish. Over the next three years, the researchers will try to find out how this natural hydrogel can be harnessed for human use. Image courtesy ETH Zurich and Simon Kuster et al. For a larger version of this image please go here.

This animal has done everything right. It has been around for 300 million years, outlived the dinosaurs and survived the catastrophic meteorite impact, warm phases and glacial periods. Even today, it continues to populate the sea at depths where it eats carrion and hunts prey. The Atlantic hagfish (Myxine glutinosa) is not really attractive at first glance.

In fact, most people probably consider it quite disgusting. Nevertheless, the hagfish - or rather its slime - has caught the attention of a group of ETH researchers at the Laboratory of Food Process Engineering of Professor Erich Windhab.

The slime of the hagfish is an extraordinary defense mechanism. When a hagfish is attacked by a predator, it secretes a glandular exudate that gels within a split second and forms a massive slime mass - even in cold water. This slime immobilizes vast amounts of water, forming a dilute, viscous and cohesive network. Fish attempting to attack the hagfish may then suffocate on the slime and thus let go of the hagfish.

TV documentary sparks interest
This slime is now the focus of a three-year ETH research project supervised by Dr Simon Kuster and conducted by doctoral student Lukas Boni, Master's student Lukas Bocker, and postdoctoral researcher Patrick Ruhs from Professor Peter Fischer's research group.

The slimy sea dweller piqued Kuster's interest two years ago when he saw a BBC documentary about the hagfish, a creature that immediately fascinated him. "As a chemist and material scientist, I couldn't help but wonder what this slime consists of and what factors allow it to immobilize such enormous amounts of water," says Kuster.

Preliminary research quickly revealed to the scientists that there had been little examination of the structure of the slime and how it is formed and secreted. The scientific community knows that the natural hydrogel produced by the hagfish has two main components: 15- to 30-cm-long protein threads and mucin, which sits between the threads and makes the slime "slimy". The protein threads have properties similar to spider silk. According to Kuster, the threads are extremely tear-resistant and elastic, though only when moist.

The components are produced in special ventral glands. Two types of cells are embedded within the gland, producing either the filamentous protein or mucin. When in danger, the hagfish secretes these cells intermittently through its pores. Thereby, the cell envelopes rupture, releasing the two components (threads and mucins). They immediately interact with the seawater and form a matrix that "absorbs" and immobilizes the water.

The slime consists of almost 100 % water and contains just 0.004 % gelling agent. In other words, the weight ratio of gelling agent to water is 26,000-fold, which is over 200 times more than in conventional animal gelatine. Furthermore, very little energy is required for the gelling process.

The ETH researchers were especially fascinated by the fact that the protein filaments have the form of a sphere measuring 150 micrometres in diameter while still in the glands, but once they are part of the slime they extend to threads of several centimetres in length. How the threads unwind from the sphere is not yet understood in depth. "The way the threads coil within the cells is highly specialised and very unusual," says Boni.

Science in the garage
The ETH researchers travelled to Norway several times in preparation for their project. Following a long search, they found a project partner in Alesund (N), which was authorised to catch Atlantic hagfish in the wild and keep them in an aquarium. "Before we partnered with the Aquarium, we carried out initial pre-trials on the slime in a garage equipped with basic laboratory infrastructure we brought to Norway," says Prof. Fischer.

Transporting the animals to Zurich would facilitate the research, but would not a be good idea. "The transport would stress the hagfish too much. They would secrete slime throughout the journey and eventually suffocate in their own slime," says Bocker. The laboratory in Zurich is also not set up to provide a species-appropriate habitat: constantly fresh seawater at 10C in a dark room.

A nature-inspired super hydrogel
The project aims to mimic the hagfish gel in order to create novel "super hydrogels". Before this, however, the researchers first need to unlock the secret of the slime formation and its huge capacity to absorb water.

Thanks to their preliminary analysis, the ETH researchers have found a way to stabilise the glandular secretion so that it can be transported to the laboratory in Zurich for further studies. However, the factors allowing this stabilisation are not yet known. If the researchers solve this puzzle, it might be possible to apply a similar stabilisation method to a biomimetic imitation product - one of the long-term goals of the project.

According to Boni, an exact functional imitation of the glandular secretion is unrealistic: "We cannot copy the slime formation mechanism of the hagfish in the laboratory. This natural system is far too complex," says the ETH doctoral candidate. However, developing a gel that follows the principle of the natural slime, on the other hand, seems possible, he says.

Hydrogels have found many applications nowadays - from disposable nappies to adhesive plasters to irrigation systems for farming. They are widely used in the food industry as well. Other researchers that previously examined the slime of this primeval fish proposed that the fibres could be used to make textiles.

The ETH researchers are not yet able to gauge whether the project, categorised as high risk and financed by an ETH research grant, will lead to a practical application soon. However, they have already been able to show how the short-lived slime - which collapses under mechanical stress - can be stabilized and functionalized by incorporating other hydrogels or particle networks.

Bocker L, Ruhs PA, Boni L, Fischer P, Kuster S. Fiber-Enforced Hydrogels: Hagfish Slime Stabilized with Biopolymers including Carrageenan. ACS Biomaterials Science and Engineering, published online Nov 10 2015. DOI: 10.1021/acsbiomaterials.5b00404


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Polymer puts new medical solutions within reach
Syracuse NY (SPX) Jan 18, 2016
Researchers, particularly those in the medical field, have been searching for a way to combine the properties of liquid crystallinity with those of hydrogels. Liquid crystals are characterized as having the fluidity of liquid but some of the order of a crystal so they can be oriented to have structure. They are not water-loving, in that they will dissolve in water, making them less than id ... read more


TECH SPACE
Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

TECH SPACE
Opportunity Welcomes Winter Solstice

A Starburst Spider On Mars

Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

TECH SPACE
SAIC Awarded $485 Million Enterprise Applications Service Technologies 2 Contract by NASA

NASA completes Orion parachute development tests

Strengthening Our Space Technology Future: Snapshots of Success

Six Orion Milestones to Track in 2016

TECH SPACE
China Plans More Than 20 Space Launches in 2016

China plans 20 launches in 2016

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

China launches HD earth observation satellite

TECH SPACE
Roscosmos prepares to launch first manned Soyuz MS

Long haul, night repairs for British, US spacewalkers

ISS Science Rockets Into 2016

British astronaut's first spacewalk set for Jan 15

TECH SPACE
NASA awards ISS cargo transport contracts

SpaceX will try to land its reusable rocket on an ocean dock

SpaceX will attempt ocean landing of rocket Jan 17

Arianespace year-opening mission delivered to Final Assembly Building

TECH SPACE
Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

TECH SPACE
Recycling light

Polymer puts new medical solutions within reach

All-antiferromagnetic memory could get digital data storage in a spin

It's a 3-D printer, but not as we know it









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.