24/7 Space News
TIME AND SPACE
Most massive touching stars ever found will eventually collide as black holes
like taxes, crunch time is inevitable
ADVERTISEMENT
     
Most massive touching stars ever found will eventually collide as black holes
by Staff Writers
London, UK (SPX) Apr 28, 2023

Two massive touching stars in a neighbouring galaxy are on course to become black holes that will eventually crash together, generating waves in the fabric of space-time, according to a new study by researchers at UCL (University College London) and the University of Potsdam.

The study, accepted for publication in the journal Astronomy and Astrophysics, looked at a known binary star (two stars orbiting around a mutual centre of gravity), analysing starlight obtained from a range of ground- and space-based telescopes.

The researchers found that the stars, located in a neighbouring dwarf galaxy called the Small Magellanic Cloud, are in partial contact and swapping material with each other, with one star currently "feeding" off the other. They orbit each other every three days and are the most massive touching stars (known as contact binaries) yet observed.

Comparing the results of their observations with theoretical models of binary stars' evolution, they found that, in the best-fit model, the star that is currently being fed on will become a black hole and will feed on its companion star. The surviving star will become a black hole shortly after.

These black holes will form in only a couple of million years, but will then orbit each other for billions of years before colliding with such force that they will generate gravitational waves - ripples in the fabric of space-time - that could theoretically be detected with instruments on Earth.

PhD student Matthew Rickard (UCL Physics and Astronomy), lead author of the study, said: "Thanks to gravitational wave detectors Virgo and LIGO, dozens of black hole mergers have been detected in the last few years. But so far we have yet to observe stars that are predicted to collapse into black holes of this size and merge in a time scale shorter than or even broadly comparable to the age of the universe.

"Our best-fit model suggests these stars will merge as black holes in 18 billion years. Finding stars on this evolutionary pathway so close to our Milky Way galaxy presents us with an excellent opportunity learn even more about how these black hole binaries form."

Co-author Daniel Pauli, a PhD student at the University of Potsdam, said: "This binary star is the most massive contact binary observed so far. The smaller, brighter, hotter star, 32 times the mass of the Sun, is currently losing mass to its bigger companion, which has 55 times our Sun's mass."

The black holes that astronomers see merge today formed billions of years ago, when the universe had lower levels of iron and other heavier elements. The proportion of these heavy elements has increased as the universe has aged and this makes black hole mergers less likely. This is because stars with a higher proportion of heavier elements have stronger winds and they blow themselves apart sooner.

The well-studied Small Magellanic Cloud, about 210,000 light years from Earth, has by a quirk of nature about a seventh of the iron and other heavy metal abundances of our own Milky Way galaxy. In this respect it mimics conditions in the universe's distant past. But unlike older, more distant galaxies, it is close enough for astronomers to measure the properties of individual and binary stars.

In their study, the researchers measured different bands of light coming from the binary star (spectroscopic analysis), using data obtained over multiple periods of time by instruments on NASA's Hubble Space Telescope (HST) and the Multi Unit Spectroscopic Explorer (MUSE) on ESO's Very Large Telescope in Chile, among other telescopes, in wavelengths ranging from ultraviolet to optical to near infrared.

With this data, the team were able to calculate the radial velocity of the stars - that is, the movement they made towards or away from us - as well as their masses, brightness, temperature and orbits. They then matched these parameters with the best-fit evolutionary model.

Their spectroscopic analysis indicated that much of the outer envelope of the smaller star had been stripped away by its larger companion. They also observed the radius of both stars exceeded their Roche lobe - that is, the region around a star where material is gravitationally bound to that star - confirming that some of the smaller star's material is overflowing and transferring to the companion star.

Talking through the future evolution of the stars, Rickard explained: "The smaller star will become a black hole first, in as little as 700,000 years, either through a spectacular explosion called a supernova or it may be so massive as to collapse into a black hole with no outward explosion.

"They will be uneasy neighbours for around three million years before the first black hole starts accreting mass from its companion, taking revenge on its companion."

Pauli, who conducted the modelling work, added: "After only 200,000 years, an instant in astronomical terms, the companion star will collapse into a black hole as well. These two massive stars will continue to orbit each other, going round and round every few days for billions of years.

"Slowly they will lose this orbital energy through the emission of gravitational waves until they orbit each other every few seconds, finally merging together in 18 billion years with a huge release of energy through gravitational waves."

Research Report:A low-metallicity massive contact binary undergoing slow Case A mass transfer: A detailed spectroscopic and orbital analysis of SSN 7 in NGC 346 in the SMC

Related Links
University College London
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
New black hole images reveal a glowing, fluffy ring and a high-speed jet
Boston MA (SPX) Apr 27, 2023
In 2017, astronomers captured the first image of a black hole by coordinating radio dishes around the world to act as a single, planet-sized telescope. The synchronized network, known collectively as the Event Horizon Telescope (EHT), focused in on M87*, the black hole at the center of the nearby Messier 87 galaxy. The telescope's laser-focused resolution revealed a very thin glowing ring around a dark center, representing the first visual of a black hole's shadow. As ... read more

ADVERTISEMENT
ADVERTISEMENT
TIME AND SPACE
NASA selects Emily Nelson as Chief Flight Director

Join the webinar on Accessibility in Human Spaceflight

Voyager will do more science with new power strategy

Creating new and better drugs with protein crystal growth experiments on the ISS

TIME AND SPACE
SpaceX aborts Starlink launch at last second, delays Falcon Heavy mission

Conservation groups sue US regulator over SpaceX launches

A second pair of SES' O3b mPower satellites launched on a SpaceX rocket

Falcon Heavy launches massive GEO satellite for Viasat

TIME AND SPACE
Examining a Potential Drill Spot: Sols 3817-3818

Just a Little Scoot: Sols 3814-3816

Sols 3812-3813: Tiny Sticks Poking Out at Us

Alberta researcher to help select samples to bring back from Mars

TIME AND SPACE
Final frontier is no longer alien

China to promote space science progress on five themes

China to develop satellite constellation for deep space exploration

China's space missions break new ground

TIME AND SPACE
Viper and T-Rex on double rocket launch

ESA recruiting for key divisional directors

CGI to extend machine learning to LEO satellite network optimisation

Latest two O3b mPOWER satellites successfully launched for SES

TIME AND SPACE
Astra announces spacecraft engine contract with Apex

Deep-learning system explores materials' interiors from the outside

Innovative NASA alloy used for 3D printed rocket

Heed the reed: thatcher scientist on mission to revive craft

TIME AND SPACE
A stormy, active sun may have kickstarted life on Earth

Webb finds water vapor, but from a rocky planet or its star

Scientists discover rare element in exoplanet's atmosphere

Can ET detect us

TIME AND SPACE
Juice's first taste of science from space

New video series captures team working on NASA's Europa Clipper

Work continues to deploy Juice RIME antenna

Icy Moonquakes: Surface Shaking Could Trigger Landslides

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.