24/7 Space News
TIME AND SPACE
New black hole images reveal a glowing, fluffy ring and a high-speed jet
In this artist's conception, a massive jet is seen rising up from the center of the black hole at the core of the M87 galaxy. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
New black hole images reveal a glowing, fluffy ring and a high-speed jet
by Jennifer Chu for MIT News
Boston MA (SPX) Apr 27, 2023

In 2017, astronomers captured the first image of a black hole by coordinating radio dishes around the world to act as a single, planet-sized telescope. The synchronized network, known collectively as the Event Horizon Telescope (EHT), focused in on M87*, the black hole at the center of the nearby Messier 87 galaxy. The telescope's laser-focused resolution revealed a very thin glowing ring around a dark center, representing the first visual of a black hole's shadow.

Astronomers have now refocused their view to capture a new layer of M87*. The team, including scientists at MIT's Haystack Observatory, has harnessed another global web of observatories - the Global Millimeter VLBI Array (GMVA) - to capture a more zoomed-out view of the black hole.

The new images, taken one year after the EHT's initial observations, reveal a thicker, fluffier ring that is 50 percent larger than the ring that was first reported. This larger ring is a reflection of the telescope array's resolution, which was tuned to pick up more of the super-hot, glowing plasma surrounding the black hole.

For the first time, scientists could see that part of the black hole's ring consists of plasma from a surrounding accretion disk - a swirling pancake of white-hot electrons that the team estimates is being heated to billions of degrees Celsius as the plasma streams into the black hole at close to the speed of light.

The images also reveal plasma trailing out from the central ring, which scientists believe to be part of a relativistic jet blasting out from the black hole. The scientists tracked these emissions back toward the black hole and observed for the first time that the base of the jet appears to connect to the central ring.

"This is the first image where we are able to pin down where the ring is, relative to the powerful jet escaping out of the central black hole," says Kazunori Akiyama, a research scientist at MIT's Haystack Observatory, who developed the imaging software used to visualize the black hole. "Now we can start to address questions such as how matter is captured by a black hole, and how it sometimes manages to escape."

Akiyama is part of an international team of astronomers who present the new images, along with their analysis, in a paper this week in Nature.

An expanded eye
To capture images of M87*, astronomers used a technique in radio astronomy known as very-long-baseline interferometry, or VLBI. When a radio signal passes by Earth, such as from a black hole's plasma emissions, radio dishes around the world can pick up the signal. Scientists can then determine the time at which each dish registers the signal, and the distance between dishes, and combine this information in a way that is analogous to the signal being seen by one very large, planet-scale telescope.

When each radio telescope is dialed to a specific frequency, the array as a whole can focus in on a particular feature of the radio signal. The EHT's network was tuned to 1.3 millimeters - a resolution equivalent to seeing a grain of rice in California, from Massachusetts. At this resolution, astronomers could see past most of the plasma surrounding M87* and image the thinnest ring, thereby accentuating the black hole's shadow.

In contrast, the GMVA network works at a slightly longer wavelength of 3 millimeters, giving it a slightly lower angular resolution. With this focus, the array could resolve a pumpkin seed, rather than a grain of rice. The network itself consists of about a dozen radio telescopes scattered around the United States and Europe, mostly located along the east-west axis of the Earth. To make a truly planet-sized telescope able to capture a far-off radio signal from M87*, astronomers had to expand the array's "eye" to the north and south.

To do so, the team involved two additional radio observatories: the Greenland Telescope to the north, and the Atacama Large Millimeter/submillimeter Array (ALMA) to the south. ALMA is an array of 66 radio dishes located in Chile's Atacama Desert. MIT Haystack scientists, including Principal Research Scientist Lynn Matthews, worked to phase, or synchronize, ALMA's dishes to work as one powerful and essential part of the GMVA network.

"Having these two telescopes [as part of] the global array resulted in a boost in angular resolution by a factor of four in the north-south direction," Matthews says. "This greatly improves the level of detail we can see. And in this case, a consequence was a dramatic leap in our understanding of the physics operating near the black hole at the center of the M87 galaxy."

Tuning in
On April 14 and 15 of 2018, astronomers coordinated the telescopes of the GMVA, along with the Greenland and ALMA observatories, to record radio emissions at a wavelength of 3 millimeters, arriving from the direction of the M87 galaxy. Scientists then used several imaging-processing algorithms, including one developed by Akiyama, to process the GMVA's observations into visual images.

The resulting pictures reveal more plasma surrounding the black hole, in the form of a larger, fluffier ring. The astronomers could also spot plasma trailing up and out from the central glowing ring.

"The exciting thing is, we still see a central dark area enclosing the black hole, but we also start to see a more extended jet, stemming from this central ring," Akiyama says.

The astronomers hope to pin down more properties of the black hole's plasma, such as its temperature profile and composition. For this, they plan to tune the EHT and GMVA to new resolutions. By observing M87* at multiple wavelengths, they can then construct a layered picture, and a more detailed understanding of black holes and the jets they generate.

"If something major happens in the world, you might tune in to both AM and FM to assemble a 'complete picture' of the event," says Geoffrey Crew, a Haystack research scientist who works to support ALMA and the EHT. "This is no different. You might think of the EHT M87* image being made in FM, and this result coming from AM. Both tell a story, and together it is a better story."

Research Report:A ring-like accretion structure in M87 connecting its black hole and jet

Related Links
MIT Haystack Observatory
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
A sharper look at the first image of a black hole
Washington DC (SPX) Apr 18, 2023
A team of researchers, including an astronomer with NSF's NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The iconic image of the su ... read more

ADVERTISEMENT
ADVERTISEMENT
TIME AND SPACE
NASA selects Emily Nelson as Chief Flight Director

Join the webinar on Accessibility in Human Spaceflight

Voyager will do more science with new power strategy

Creating new and better drugs with protein crystal growth experiments on the ISS

TIME AND SPACE
SpaceX aborts Starlink launch at last second, delays Falcon Heavy mission

Conservation groups sue US regulator over SpaceX launches

A second pair of SES' O3b mPower satellites launched on a SpaceX rocket

Falcon Heavy launches massive GEO satellite for Viasat

TIME AND SPACE
Examining a Potential Drill Spot: Sols 3817-3818

Just a Little Scoot: Sols 3814-3816

Sols 3812-3813: Tiny Sticks Poking Out at Us

Alberta researcher to help select samples to bring back from Mars

TIME AND SPACE
Final frontier is no longer alien

China to promote space science progress on five themes

China to develop satellite constellation for deep space exploration

China's space missions break new ground

TIME AND SPACE
Viper and T-Rex on double rocket launch

ESA recruiting for key divisional directors

CGI to extend machine learning to LEO satellite network optimisation

Latest two O3b mPOWER satellites successfully launched for SES

TIME AND SPACE
Astra announces spacecraft engine contract with Apex

Deep-learning system explores materials' interiors from the outside

Innovative NASA alloy used for 3D printed rocket

Heed the reed: thatcher scientist on mission to revive craft

TIME AND SPACE
A stormy, active sun may have kickstarted life on Earth

Webb finds water vapor, but from a rocky planet or its star

Scientists discover rare element in exoplanet's atmosphere

Can ET detect us

TIME AND SPACE
Juice's first taste of science from space

New video series captures team working on NASA's Europa Clipper

Work continues to deploy Juice RIME antenna

Icy Moonquakes: Surface Shaking Could Trigger Landslides

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.