. 24/7 Space News .
EARLY EARTH
Model links patterns in sediment to rain, uplift and sea level change
by Staff Writers
Austin TX (SPX) Aug 03, 2020

stock image only

Forces that shape the Earth's surface are recorded in a number of natural records, from tree rings to cave formations.

In a recent study, researchers from The University of Texas at Austin show that another natural record - sediments packed together at basin margins - offers scientists a powerful tool for understanding the forces that shaped our planet over millions of years, with implications on present day understanding

The study was published in the journal Geology and uses a computer model to connect distinct patterns in the sedimentary deposits to shifts in climate and tectonic activity.

"We are trying to find a way to distinguish the tectonics and the climate signals," said lead author Jinyu Zhang, a research associate at UT's Bureau of Economic Geology. "By using this numerical model we suddenly have this power to simulate the world under different tectonics and climate."

Zoltan Sylvester and Jacob Covault, both research scientists at the bureau, co-authored the paper.

Geoscientists have long looked to sedimentary basins for clues about Earth's past climate. That's because sediment supply is closely linked to environmental factors, such as rainfall or snowfall, that influence sediment creation through erosion and sediment transport across a landscape and into a basin. Tectonic factors also influence sediment creation, with increasing uplift associated with more sediment and decreasing uplift with less.

However, despite knowledge of sediment supply being linked with climate and tectonics, the researchers said little is known about how changes in these phenomena directly influence how sediment is deposited along basin margins over long time scales.

This study changes that, with Zhang using the open-source computer program pyBadlands to create a "source-to-sink" 3D model that tracks how changes in precipitation, tectonic uplift and sea level influence sediment erosion and deposition. The model uses topography inspired by the Himalaya Mountains and Indus River Delta to track the sediment as it makes its way from the mountains, through a river system, and settles into a basin margin over millions of years.

"This is one of the first [models] to put the landscape evolution part with the stratigraphic response, depositional response, and do it in 3D," Covault said. "Jinyu has made a really great step in putting this all together."

The researchers ran 14 different scenarios - each with a different climatic, tectonic, and sea level settings - over a simulated time period of 30 million years to investigate changes in landscape topography and sediment deposition.

The different scenarios created distinct patterns in sediment deposition, which allowed the researchers to draw general conclusions about how tectonic and climatic factors affect basin margin growth. For example, changes in uplift take millions of years to affect change in the basin margin sediments, but once those changes are in effect, they set a new baseline for behavior. In contrast, changes in precipitation cause much more abrupt change, followed by a return to the depositional behavior observed before the climate shift.

The scenarios showed that sea level could potentially complicate the delivery of the signal of tectonic change into the basin. For example, an increase in sea level flooded coastal regions and interfered with sediment reaching a basin margin. But when this scenario was paired with increased precipitation, the sediment supply was large enough to make it to the basin margin.

Gary Hampson, a professor at Imperial College London who was not part of the study, said that the model provides important guidelines for geoscientists looking to reconstruct Earth's past.

"The results increase the confidence with which geoscientists can interpret tectonic and climatic histories in the geologic archives of basin margins," he said.

Zhang spent the past two years learning the programming language Python so he could use the pyBadlands software, which was developed by the University of Sydney's Tristan Salles.

Sylvester, who leverages similar tools to study erosion and sedimentation in river systems, said that the computing tools available to geoscientists are making long-standing yet fundamental questions in geosciences more accessible than ever.

"It's an exciting time," he said. "It's increasingly easier to investigate the stratigraphic record in a quantitative way."

Research paper


Related Links
University Of Texas At Austin
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Experts' high-flying study reveals secrets of soaring birds
Swansea UK (SPX) Jul 27, 2020
New research has revealed when it comes to flying the largest of birds don't rely on flapping to move around. Instead they make use of air currents to keep them airborne for hours at a time. The Andean condor - the world's heaviest soaring bird which can weigh in at up to 15kg - actually flaps its wings for one per cent of its flight time. The study is part of a collaboration between Swansea University's Professor Emily Shepard and Dr Sergio Lambertucci in Argentina, that uses high-tech flig ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Work Begins on Delta Faucet's Droplet Formation Space Station Experiment This Week

ESA Astronauts Maurer and Pesquet continue training at JSC

Explore how space supports daily life around the world

Room with a view: Virgin Galactic gives peek at spacecraft cabin

EARLY EARTH
Astronauts praise 'flawless' SpaceX capsule landing

Key Connection for Artemis I Arrives at Kennedy

SpaceX brings NASA astronauts home safe in milestone mission

South Korea given green light for solid-propellant rockets

EARLY EARTH
Radiation-Devouring Mold Could Be Humanity's Key to Venturing to Mars, New Research Says

A European dream team for Mars

Ice sheets, not rivers, carved valleys on Mars, new study says

NASA's Perseverance rover bound for Mars to seek ancient life

EARLY EARTH
China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

EARLY EARTH
Amazon to invest $10 bn in space-based internet system

Latvia becomes ESA Associate Member State

State of the Space Industrial Base 2020 Report

ESA's Thomas Pesquet to be first European to ride a Dragon to Space Station

EARLY EARTH
Transforming e-waste into a strong, protective coating for metal

Return of the LIDAR

How to mix old tires and building rubble to make sustainable roads

Pentagon aims to continue supporting telework

EARLY EARTH
Microbes in the seabed survive on little energy

Surprising number of exoplanets could host life

As if space wasn't dangerous enough

Scientists revive microbes from 100 million years ago

EARLY EARTH
NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.