. 24/7 Space News .
TECH SPACE
How to mix old tires and building rubble to make sustainable roads
by Staff Writers
Melbourne, Australia (SPX) Aug 03, 2020

.

Researchers have shown how a blend of old tyres and building rubble could be used as a sustainable road-making material, in a zero-waste solution to boost recycling and support the circular economy.

Construction, renovation and demolition account for about half the waste produced annually worldwide, while around 1 billion scrap tyres are generated globally each year.

The new material, developed by researchers at RMIT University in Melbourne, Australia, is the first to combine recycled rubble and rubber in a mix that is precisely optimised to meet road engineering safety standards.

Designed to be used for base layers, the recycled blend is more flexible than standard materials, making roads less prone to cracking.

Lead researcher Dr Mohammad Boroujeni said the rubble-rubber mix could deliver both environmental and engineering benefits.

"Traditional road bases are made of unsustainable virgin materials - quarried rock and natural sand," Boroujeni said.

"Our blended material is a 100% recycled alternative that offers a new way to reuse tyre and building waste, while performing strongly on key criteria like flexibility, strength and permanent deformation.

"As we push towards a circular economy that can eliminate waste and support the continual use of resources, our recycled blend is the right choice for better roads and a better environment."

In Australia, only 16% of scrap tyres are domestically recycled. About 3.15 million tons of processed building rubble - known as recycled concrete aggregate (RCA) - is added to stockpiles each year rather than being reused. In 2019, federal and state governments agreed to ban the export of certain waste materials, with the aim of building Australia's capacity to generate high value recycled commodities and associated demand. As part of the agreement, whole used tyres will be banned from export by December 2021.

On the road to a circular economy
Roads are made of four layers - a subgrade, base and sub-base, with asphalt on top.

All the layers must be strong enough to withstand the pressures of heavy vehicles, while being flexible enough to allow the right amount of movement so a road doesn't easily crack.

RCA can potentially be used on its own for road base layers, but adding recycled rubber can significantly enhance the finished product.

In previous research, the RMIT School of Engineering team has shown their rubble-rubber blend performs well when tested for stress, acid and water resistance, as well as strength, deformation and dynamic properties. Its low shrinkage and good flexibility reduce the risk of cracking.

The new study published in Construction and Building Materials looked at how the mix would withstand the pressures of being driven over by countless vehicles over its lifetime.

Researchers used special machinery to assess the blended material's performance under frictional force, or shear stress, and compared different types of crumb rubber (fine and coarse) mixed into the RCA at different ratios.

The team identified an optimal mixture - 0.5% fine crumb rubber to 99.5% RCA - that delivered on shear strength while maintaining good cohesion between the two materials.

Chief investigator Professor Jie Li said while the recycling of construction waste and scrap tyres was growing, both industries continued to produce significantly more waste than is currently reused.

"Solutions to our waste problems will come not only from reducing how much goes to landfill and increasing how much we recycle; developing new and innovative uses for our recycled materials is absolutely vital," Li said.

Research Report: 'An experimental study on the shear behaviour of recycled concrete aggregate incorporating recycled tyre waste'


Related Links
RMIT University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Chemists make tough plastics recyclable
Boston MA (SPX) Jul 27, 2020
Thermosets, which include epoxies, polyurethanes, and rubber used for tires, are found in many products that have to be durable and heat-resistant, such as cars or electrical appliances. One drawback to these materials is that they typically cannot be easily recycled or broken down after use, because the chemical bonds holding them together are stronger than those found in other materials such as thermoplastics. MIT chemists have now developed a way to modify thermoset plastics with a chemical lin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Work Begins on Delta Faucet's Droplet Formation Space Station Experiment This Week

ESA Astronauts Maurer and Pesquet continue training at JSC

Explore how space supports daily life around the world

Room with a view: Virgin Galactic gives peek at spacecraft cabin

TECH SPACE
Astronauts praise 'flawless' SpaceX capsule landing

Key Connection for Artemis I Arrives at Kennedy

SpaceX brings NASA astronauts home safe in milestone mission

South Korea given green light for solid-propellant rockets

TECH SPACE
Radiation-Devouring Mold Could Be Humanity's Key to Venturing to Mars, New Research Says

A European dream team for Mars

Ice sheets, not rivers, carved valleys on Mars, new study says

NASA's Perseverance rover bound for Mars to seek ancient life

TECH SPACE
China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

TECH SPACE
Amazon to invest $10 bn in space-based internet system

Latvia becomes ESA Associate Member State

State of the Space Industrial Base 2020 Report

ESA's Thomas Pesquet to be first European to ride a Dragon to Space Station

TECH SPACE
How to mix old tires and building rubble to make sustainable roads

Pentagon aims to continue supporting telework

Hole in none: how screen golf got serious in South Korea

Texas firm develops adaptable satellites with fast software upgrades

TECH SPACE
Surprising number of exoplanets could host life

As if space wasn't dangerous enough

Scientists revive microbes from 100 million years ago

Exoplanet rediscovery is step toward finding habitable planets

TECH SPACE
NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.