. 24/7 Space News .
X-rays reveal the biting truth about parrotfish teeth
by Staff Writers
Berkeley CA (SPX) Nov 27, 2017

Scientists studied the microstructure of the coral-chomping teeth of the steephead parrotfish, pictured here, to learn about the fish's powerful bite.

So, you thought the fictional people-eating great white shark in the film "Jaws" had a powerful bite.

But don't overlook the mighty mouth of the parrotfish - its hardy teeth allow it to chomp on coral all day long, ultimately chewing and grinding it up through digestion into fine sand. That's right: Its "beak" creates beaches. A single parrotfish can produce hundreds of pounds of sand each year.

Now, a study by scientists - including those at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) - has revealed a chain mail-like woven microstructure that gives parrotfish teeth their remarkable bite and resilience.

The natural structure they observed also provides a blueprint for creating ultra-durable synthetic materials that could be useful for mechanical components in electronics, and in other devices that undergo repetitive movement, abrasion, and contact stress.

Matthew Marcus, a staff scientist working at Berkeley Lab's Advanced Light Source (ALS) - an X-ray source known as a synchrotron light source that was integral in the parrotfish study - became intrigued with parrotfish during a 2012 visit to the Great Barrier Reef off of the coast of Australia.

A sea-life video he watched on an oceangoing tour boat reminded him of the role of parrotfish in breaking down coral into fine sand. They mainly feast on the polyps and algae that live on the surface of coral skeletons, and help to clean up reefs. The hardness of parrotfish teeth measured near the biting surface is about 530 tons of pressure per square inch - equivalent to a stack of about 88 African elephants - compressed to a square inch of space.

"I was reminded that this is a fish that crunches up coral all day, and is responsible for much of the white sand on beaches," Marcus said. "But how can this fish eat coral and not lose its teeth?"

Back at the ALS, Marcus asked Pupa Gilbert - a biophysicist and professor in the Physics Department at the University of Wisconsin-Madison who studies how living things produce minerals - if she was interested in studying the parrotfish teeth.

Gilbert said she "responded enthusiastically" to the challenge. She led an international team in the study, receiving parrotfish beaks from collaborators in French Polynesia. Her collaborators from Nanyang Technical University in Singapore - Ali Miserez, an associate professor who studies biological materials with unique properties, and his group - performed mechanical measurements for the study. Gilbert carried out most of the structural studies to understand how parrotfish teeth work.

Marcus served as the first author in this latest study, led by Gilbert and published online Oct. 20 in the journal ACS Nano. Gilbert had previously included Marcus in one of her studies that focused on nacre, the fracture-tough, iridescent coating known as mother-of-pearl that lines the inside of some mollusk shells. Nacre has inspired R and D work to mimic its strength properties using synthetic materials.

This and similar studies have relied on a technique known as PIC (polarization-dependent imaging contrast) mapping, which Gilbert invented and continues to develop at the ALS. In PIC mapping, the polarization of X-rays is rotated to enable the analysis and display of nanoscale crystal orientation in nacre and other biominerals.

"The ALS is the first place where PIC mapping was done," said Gilbert. "You can understand at a glance how every nanocrystal in a given image is oriented."

She added, "If you are looking at a tooth, or a bone, or a mollusk shell, or a piece of coral, this is super-interesting. It tells you how nanocrystals are arranged with respect to one another. You can see these beautiful images that look better than abstract art, and learn how biominerals form and function."

In this latest study, Gilbert, Marcus, and Miserez wanted to see how the fine crystal structure of parrotfish teeth contribute to their incredible strength. The researchers were able to visualize the orientation of individual crystals, which showed their intricately woven structure.

Fluorapatite, the mineral responsible for the crystal structure of parrotfish teeth, contains calcium, fluorine, phosphorous, and oxygen.

The study showed that the fluorapatite crystals that give parrotfish teeth their strength each measure about 100 nanometers (billionths of a meter) wide and several microns (millionths of a meter) long, and are assembled into interwoven bundles. The bundles decrease in average diameter from about 5 microns to about 2 microns toward the tip of each tooth.

While tooth enamel from many different species of animals can appear similar to conventional microscopes, Gilbert noted that these images can overlook the unique orientation of crystals in the enamel structure of teeth. And the crystal orientation, she said, "tells a big story about how different teeth are specialized for different functions."

In the case of parrotfish, the continuously growing rows of teeth, which form a beaklike structure that constantly replaces older, worn teeth with new teeth, are also integral to their specialized feeding behavior. Only chitons have harder teeth than parrotfish, Gilbert said, and no other biomineral is stiffer than parrotfish teeth at their biting tip.

"Parrotfish teeth are the coolest biominerals of all," Gilbert said. "They are the stiffest, among the hardest, and the most resistant to fracture and to abrasion ever measured." Parrotfish have about 1,000 teeth situated in about 15 rows, and each tooth is cemented to all of the others and surrounded by bone to form a solid beak - shark's teeth, by contrast, are not interconnected in this way.

The mechanical measurements for the study, which focused on teeth samples from a steephead parrotfish (Chlorurus microrhinos), found that the hardness and stiffness increases toward the tip of each tooth. The PIC mapping experiments at the ALS revealed that as the hardness and stiffness increases, the diameter of the crystal bundles narrows.

In addition to the PIC-mapping study, which used a tool known as a photoemission electron microscope (PEEM) at the ALS, separate ALS experiments used a 3-D imaging technology known as X-ray microtomography and another X-ray method known as microdiffraction to further analyze the crystal orientations and strains of the teeth.

"The interwoven characteristic and the crystal orientations are completely open to be explored for the production of synthetic materials," said Gilbert. "Weaving is one of the oldest things that people have learned how to do. You could think of actually weaving crystals, as crystals become flexible when they are very thin."

Already, Gilbert noted, there are many well-developed efforts to replicate the structure of human enamel using nanofabrication methods.

Gilbert and Marcus suggested that future experiments at the ALS could focus on a separate set of teeth (pharyngeal teeth) that further break down coral bits in parrotfish throats.

"The sky's the limit at this point," Gilbert said. "This first observation of the mechanical properties is exciting, and now a lot more work can be done on the structural properties."

Research paper

Soft magnetic material characterizations get a harder look
Washington DC (SPX) Nov 22, 2017
In motors, generators and similar electric machines, the electrical current that powers them generates magnetic fields that magnetize some of the metallic components. Choosing the right magnetic material is crucial for designing efficient machines, so researchers from the Institute of Electrical Machines (IEM) at RWTH Aachen University in Germany analyzed the existing system for characteri ... read more

Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

Can a magnetic sail slow down an interstellar probe

SSL Selected to Conduct Power and Propulsion Study for NASA's Deep Space Gateway Concept

Flat-Earther's self-launch plan hits a snag

SSTL ships CARBONITE-2 and Telesat's LEO-1 for PSLV launch

Aerojet Rocketdyne supports ULA Delta II launch of JPSS-1

Old Rivals India, China Nurture New Rivalry in Satellite Launch Business

Gadgets for Mars

Ice shapes the landslide landscape on Mars

Winds Blow Dust off the Solar Panels Improving Energy Levels

Previous evidence of water on Mars now identified as grainflows

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

Astronaut meets volcano

European Space Week starts in Estonia

New way to write magnetic info could pave the way for hardware neural networks

Device could reduce the carbon footprint of ethylene production

Researchers inadvertently boost surface area of nickel nanoparticles for catalysis

X-rays reveal the biting truth about parrotfish teeth

First known interstellar visitor is an 'oddball'

Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

Images of strange solar system visitor peel away some of the mystery

Familiar-Looking Messenger from Another Solar System

Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.