24/7 Space News
CHIP TECH
Mass-producible miniature quantum memory
Light pulses can be stored and retrieved in the glass cell, which is filled with rubidium atoms and is only a few millimeters in size.
Mass-producible miniature quantum memory
by Oliver Morsch for UBasel News
Basel, Switzerland (SPX) Jan 18, 2024

Researchers at the University of Basel have built a quantum memory element based on atoms in a tiny glass cell. In the future, such quantum memories could be mass-produced on a wafer.

It is hard to imagine our lives without networks such as the internet or mobile phone networks. In the future, similar networks are planned for quantum technologies that will enable the tap-proof transmission of messages using quantum cryptography and make it possible to connect quantum computers to each other.

Like their conventional counterparts, such quantum networks require memory elements in which information can be temporarily stored and routed as needed. A team of researchers at the University of Basel led by Professor Philipp Treutlein has now developed such a memory element, which can be micro-fabricated and is, therefore, suitable for mass production. Their results were recently published in the scientific journal Physical Review Letters.

Photon storage in glass cells
Light particles are particularly suited to transmitting quantum information. Photons can be used to send quantum information through fiber optic cables, to satellites or into a quantum memory element. There, the quantum mechanical state of the photons has to be stored as precisely as possible and, after a certain time, converted back into photons.

Two years ago, the Basel researchers demonstrated this works well using rubidium atoms in a glass cell. "However, that glass cell was handmade and several centimeters in size," says postdoc Dr. Roberto Mottola: "To be suitable for everyday use, such cells need to be smaller and amenable to being produced in large numbers."

That is precisely what Treutlein and his collaborators have now achieved. To use a much smaller cell measuring only a few millimeters, which they obtained from the mass production of atomic clocks, they needed to develop a few tricks. In order to have a sufficient number of rubidium atoms for quantum storage despite the small size of the cell, they had to heat up the cell to 100 degrees centigrade to increase the vapor pressure.

Moreover, they exposed the atoms to a magnetic field of 1 tesla, more than ten thousand times stronger than Earth's magnetic field. This shifted the atomic energy levels in a way that facilitated the quantum storage of photons using an additional laser beam. This method allowed the researchers to store photons for around 100 nanoseconds. Free photons would have traveled 30 meters in that time.

A thousand quantum memories on a single wafer
"In this way, we have built, for the first time, a miniature quantum memory for photons of which around 1000 copies can be produced in parallel on a single wafer", says Treutlein. In the current experiment, storage was demonstrated using strongly attenuated laser pulses, but in the near future, Treutlein, in collaboration with the CSEM in Neuchatel, also wants to store single photons in the miniature cells. Moreover, the format of the glass cells still needs to be optimized, such as to store the photons for as long as possible while preserving their quantum states.

Research Report:Optical Memory in a Microfabricated Rubidium Vapor Cell

Related Links
University of Basel
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Generating stable qubits at room temperature
Fukuoka, Japan (SPX) Jan 12, 2024
In a study published in Science Advances, a group of researchers led by Associate Professor Nobuhiro Yanai from Kyushu University's Faculty of Engineering, in collaboration with Associate Professor Kiyoshi Miyata from Kyushu University and Professor Yasuhiro Kobori of Kobe University, reports that they have achieved quantum coherence at room temperature: the ability of a quantum system to maintain a well-defined state over time without getting affected by surrounding disturbances This breakthrough ... read more

CHIP TECH
Starliner parachute system upgrade tested before crewed flight

Ax-3: A Step Forward in Long-Duration Space Missions with Advanced Tech Experiments

Revolutionizing Space Habitats: Aurelia Institute's TESSERAE for Biotech Studies

At CES, gadgets to make everyday life easier

CHIP TECH
SpaceX completes second launch Sunday, sends more satellites into orbit

Rocket maker working on medium-lift model

China's Gravity 1 sets record for solid rocket fuels in maiden launch

Self-eating rocket could help UK take a big bite of space industry

CHIP TECH
Water may have flowed through Martian Valleys countless times

IDEFIX Rover Set to Embark on Pioneering Journey to Martian Moon Phobos

Potential solvents identified for building on Moon and Mars

NASA's CHAPEA mission reaches 200-Day milestone in Mars Analog Study

CHIP TECH
Tianzhou 7 mission set to enhance operations at China's Tiangong Space Station

Tianzhou 6 cargo spacecraft to return to Earth

Tianxing 1B satellite launched by Kuaizhou 1A to conduct space environment survey

China begins 2024 with key Kuaizhou 1A satellite launch

CHIP TECH
MEASAT Partners with SpaceX as Official Reseller for Starlink Services in Key Markets

Iridium announces Project Stardust for Global, Standards-Based IoT Connectivity

Euroconsult forecasts $75 Billion in growth for Middle East's Space Sector by 2032

Wiseband and Rivada Space Networks join forces for Middle Eastern network expansion

CHIP TECH
Epic says Apple court fight is 'lost'

US, UK strikes targeted Huthi radar, missile capabilities: defense chief

D-Orbit Secures Record euro 100m in Series C Funding, Advancing Space Logistics and In-Orbit Services

NASA's Cryo Efforts Beyond the Atmosphere

CHIP TECH
Study uncovers potential origins of life in ancient hot springs

Earth-sized planet discovered in 'our solar backyard'

Astronomers make rare exoplanet discovery

Old stars may be the best places to search for life, new study suggests

CHIP TECH
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.