24/7 Space News
TECH SPACE
MIT engineers solve the sticky-cell problem in bioreactors and other industries
illustration only
MIT engineers solve the sticky-cell problem in bioreactors and other industries
by Zach Winn | MIT News
Boston MA (SPX) Oct 22, 2025

To help mitigate climate change, companies are using bioreactors to grow algae and other microorganisms that are hundreds of times more efficient at absorbing CO2 than trees. Meanwhile, in the pharmaceutical industry, cell culture is used to manufacture biologic drugs and other advanced treatments, including lifesaving gene and cell therapies.

Both processes are hampered by cells' tendency to stick to surfaces, which leads to a huge amount of waste and downtime for cleaning. A similar problem slows down biofuel production, interferes with biosensors and implants, and makes the food and beverage industry less efficient.

Now, MIT researchers have developed an approach for detaching cells from surfaces on demand, using electrochemically generated bubbles. In an open-access paper published in Science Advances, the researchers demonstrated their approach in a lab prototype and showed it could work across a range of cells and surfaces without harming the cells.

"We wanted to develop a technology that could be high-throughput and plug-and-play, and that would allow cells to attach and detach on demand to improve the workflow in these industrial processes," says Professor Kripa Varanasi, senior author of the study. "This is a fundamental issue with cells, and we've solved it with a process that can scale. It lends itself to many different applications."

Joining Varanasi on the study are co-first authors Bert Vandereydt, a PhD student in mechanical engineering, and former postdoc Baptiste Blanc.

Solving a sticky problem

The researchers began with a mission.

"We've been working on figuring out how we can efficiently capture CO2 across different sources and convert it into valuable products for various end markets," Varanasi says. "That's where this photobioreactor and cell detachment comes into the picture."

Photobioreactors are used to grow carbon-absorbing algae cells by creating tightly controlled environments involving water and sunlight. They feature long, winding tubes with clear surfaces to let in the light algae need to grow. When algae stick to those surfaces, they block out the light, requiring cleaning.

"You have to shut down and clean up the entire reactor as frequently as every two weeks," Varanasi says. "It's a huge operational challenge."

The researchers realized other industries have similar problem due to many cells' natural adhesion, or stickiness. Each industry has its own solution for cell adhesion depending on how important it is that the cells survive. Some people scrape the surfaces clean, while others use special coatings that are toxic to cells.

In the pharmaceutical and biotech industries, cell detachment is typically carried out using enzymes. However, this method poses several challenges - it can damage cell membranes, is time-consuming, and requires large amounts of consumables, resulting in millions of liters of biowaste.

To create a better solution, the researchers began by studying other efforts to clear surfaces with bubbles, which mainly involved spraying bubbles onto surfaces and had been largely ineffective.

"We realized we needed the bubbles to form on the surfaces where we don't want these cells to stick, so when the bubbles detach it creates a local fluid flow that creates shear stress at the interface and removes the cells," Varanasi explains.

Electric currents generate bubbles by splitting water into hydrogen and oxygen. But previous attempts at using electricity to detach cells were hampered because the cell culture mediums contain sodium chloride, which turns into bleach when combined with an electric current. The bleach damages the cells, making it impractical for many applications.

"The culprit is the anode - that's where the sodium chloride turns to bleach," Vandereydt explained. "We figured if we could separate that electrode from the rest of the system, we could prevent bleach from being generated."

To make a better system, the researchers built a 3-square-inch glass surface and deposited a gold electrode on top of it. The layer of gold is so thin it doesn't block out light. To keep the other electrode separate, the researchers integrated a special membrane that only allows protons to pass through. The set up allowed the researchers to send a current through without generating bleach.

To test their setup, they allowed algae cells from a concentrated solution to stick to the surfaces. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.

The researchers also studied the interaction between the bubbles and cells, finding the higher the current density, the more bubbles were created and the more algae was removed. They developed a model for understanding how much current would be needed to remove algae in different settings and matched it with results from experiments involving algae as well as cells from ovarian cancer and bones.

"Mammalian cells are orders of magnitude more sensitive than algae cells, but even with those cells, we were able to detach them with no impact to the viability of the cell," Vandereydt says.

Getting to scale

The researchers say their system could represent a breakthrough in applications where bleach or other chemicals would harm cells. That includes pharmaceutical and food production.

"If we can keep these systems running without fouling and other problems, then we can make them much more economical," Varanasi says.

For cell culture plates used in the pharmaceutical industry, the team envisions their system comprising an electrode that could be robotically moved from one culture plate to the next, to detach cells as they're grown. It could also be coiled around algae harvesting systems.

"This has general applicability because it doesn't rely on any specific biological or chemical treatments, but on a physical force that is system-agnostic," Varanasi says. "It's also highly scalable to a lot of different processes, including particle removal."

Varanasi cautions there is much work to be done to scale up the system. But he hopes it can one day make algae and other cell harvesting more efficient.

"The burning problem of our time is to somehow capture CO2 in a way that's economically feasible," Varanasi says. "These photobioreactors could be used for that, but we have to overcome the cell adhesion problem."

The work was supported, in part, by Eni S.p.A through the MIT Energy Initiative, the Belgian American Educational Foundation Fellowship, and the Maria Zambrano Fellowship.

Research Report:"Bubble-driven cell detachment"

Related Links
Department of Mechanical Engineering
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Germany's Merz calls for deregulation to aid chemicals industry
Frankfurt, Germany (AFP) Oct 20, 2025
The European Union needs to soften environmental rules to boost Germany's chemicals industry and help revive the sluggish economy, Chancellor Friedrich Merz said Monday. Speaking at a trade union event in Hannover, Merz said that he would press the EU to "reduce unnecessary bureaucracy" and fight "to stop new bureaucracy". Germany will push for the "simplification" of EU REACH regulations on chemical safety, Merz said, citing "long and complex procedures". He also said industry should be giv ... read more

TECH SPACE
China urges 'equal dialogue' with US as Apple's Cook visits

Europe cannot let US, China be 'technological leaders': Nobel laureate Aghion

Blue Origin sends six passengers to the edge of space on NS-36 suborbital flight

'She power' on the rise across China's sci-tech landscape

TECH SPACE
SpaceX launches Starship megarocket on successful test flight

SpaceX plans Starship test flight in Texas as early as Monday

Rocket Lab widens iQPS partnership with three more dedicated Electron launches starting 2026

Raytheon and Anduril achieve breakthrough test in advanced rocket propulsion

TECH SPACE
Martian craters record repeated ice ages as planetary ice stores dwindle

Computer models point to crew diversity as key to resilient Mars missions

Two decades of Mars images reveal fast moving dust devils and stronger winds

Mars dust devils point to planet wide gale force winds

TECH SPACE
Chinese astronauts complete fourth spacewalk of Shenzhou XX mission

Constellations of Power: Smart Dragon-3 and the Geopolitics of China's Space Strategy

China advances lunar program with Long March 10 ignition test

Chinese astronauts expand science research on orbiting space station

TECH SPACE
Momentus Expands NASA Partnership with Dual Contracts for In-Space Manufacturing and Propulsion Demonstrations

Europe needs reusable rockets to catch Musk's SpaceX: ESA chief

AST SpaceMobile and Verizon Partner to Deliver Space-Based Cellular Service Across the U.S.

T-Satellite powers smartphone apps beyond cell coverage

TECH SPACE
In Simandou mountains, Guinea prepares to cash in on iron ore

Japan urges united G7 as US describes Beijing's rare earths move as 'China vs world'

Printable aluminum alloy sets strength records, may enable lighter aircraft parts

EU to hold urgent industry talks Monday on China rare-earth export curbs

TECH SPACE
Planet formation depends on when it happens: UNLV model shows why

Rogue planet devours matter at record pace of six billion tonnes a second

Completed Plato spacecraft construction enters final test campaign

Rare clean room bacterium survives by playing dead UH team finds

TECH SPACE
Out-of-this-world ice geysers on Saturn's Enceladus

3 Questions: How a new mission to Uranus could be just around the corner

A New Model of Water in Jupiter's Atmosphere

Evidence of a past, deep ocean on Uranian moon, Ariel

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.