24/7 Space News
EARTH OBSERVATION
Look on the Bright Side of Earth
Global cloudiness map, based on data collected by the Aqua research satellite over more than a decade (2002-2015). Clouds are not distributed uniformly but rather concentrated in hot spots. Photo: NASA
ADVERTISEMENT
     
Look on the Bright Side of Earth
by Staff Writers
Rehovot, Israel (SPX) Feb 27, 2023

When looking at the Earth from space, its hemispheres - northern and southern - appear equally bright. This is particularly unexpected because the Southern Hemisphere is mostly covered with dark oceans, whereas the Northern Hemisphere has a vast land area that is much brighter than these oceans. For years, the brightness symmetry between hemispheres remained a mystery.

In a new study, published in the Proceedings of the National Academy of Sciences (PNAS), Weizmann Institute of Science researchers and their collaborators reveal a strong correlation between storm intensity, cloudiness and the solar energy reflection rate in each hemisphere. They offer a solution to the mystery, alongside an assessment of how climate change might alter the reflection rate in the future.

As early as the 1970s, when scientists analyzed data from the first meteorological satellites, they were surprised to find out that the two hemispheres reflect the same amount of solar radiation. Reflectivity of solar radiation is known in scientific lingo as "albedo." To better comprehend what albedo is, think about driving at night: It is easy to spot the intermittent white lines, which reflect light from the car's headlights well, but difficult to discern the dark asphalt.

The same is true when observing Earth from space: The ratio of the solar energy hitting the Earth to the energy reflected by each region is determined by various factors. One of them is the ratio of dark oceans to bright land, which differ in reflectivity, just like asphalt and intermittent white lines. The land area of the Northern Hemisphere is about twice as large as that of the Southern, and indeed when measuring near the surface of the Earth, when the skies are clear, there is more than a 10 percent difference in albedo. Still, both hemispheres appear to be equally bright from space.

In this study, the team of researchers, led by Prof. Yohai Kaspi and Or Hadas of Weizmann's Earth and Planetary Sciences Department, focused on another factor influencing albedo, one located in high altitudes and reflecting solar radiation - clouds. The team analyzed data derived from the world's most advanced databases, including cloud data collected via NASA satellites (CERES), as well as data from ERA5, which is a global weather database containing information collected using a variety of sources in the air and on the ground, dating back to 1950. ERA5 data was utilized to complete cloud data and to cross-correlate 50 years of this data with information on the intensity of cyclones and anticyclones.

Next, the scientists classified storms of the last 50 years into three categories, according to intensity. They discovered a direct link between storm intensity and the number of clouds forming around the storm. While Northern Hemisphere and land areas in general are characterized by weaker storms, above oceans in the Southern Hemisphere, moderate and strong storms prevail.

Data analysis showed that the link between storm intensity and cloudiness accounts for the difference in cloudiness between the hemispheres. "Cloud albedo arising from strong storms above the Southern Hemisphere was found to be a high-precision offsetting agent to the large land area in the Northern Hemisphere, and thus symmetry is preserved," says Hadas, adding: "This suggests that storms are the linking factor between the brightness of Earth's surface and that of clouds, solving the symmetry mystery."

Could climate change make one of the hemispheres darker?
Earth has been undergoing rapid change in recent years, owing to climate change. To examine whether and how this could affect hemispheric albedo symmetry, the scientists used CMIP6, a set of models run by climate modeling centers around the world to simulate climate change. One of these models' major shortcomings is their limited ability to predict the degree of cloudiness. Nevertheless, the relation found in this study between storm intensity and cloudiness enables scientists to assess future cloud amounts, based on storm predictions.

Models predict global warming will result in a decreased frequency of all storms above the Northern Hemisphere and of weak and moderate storms above the Southern Hemisphere. However, the strongest storms of the Southern Hemisphere will intensify. The cause of these predicted differences is "Arctic amplification," a phenomenon in which the North Pole warms twice as fast as Earth's mean warming rate. One might speculate that this difference should break hemispheric albedo symmetry. However, the research shows that a further increase in storm intensity might not change the degree of cloudiness in the Southern Hemisphere because cloud amounts reach saturation in very strong storms. Thus, symmetry might be preserved.

"It is not yet possible to determine with certainty whether the symmetry will break in the face of global warming," says Kaspi. "However, the new research solves a basic scientific question and deepens our understanding of Earth's radiation balance and its effectors. As global warming continues, geoengineered solutions will become vital for human life to carry on alongside it. I hope that a better understanding of basic climate phenomena, such as the hemispheric albedo symmetry, will help in developing these solutions."

Other collaborators in conducting this study include Dr. George Datseris and Prof. Bjorn Stevens of Max Planck Institute for Meteorology, Germany; Dr. Joaquin Blanco and Prof. Rodrigo Caballero of Stockholm University, Sweden; and Dr. Sandrine Bony of Sorbonne University, France.

Related Links
The Helen Kimmel Center for Planetary Science
Earth Observation News - Suppiliers, Technology and Application

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARTH OBSERVATION
Capella Space announces Analytics Program to accelerate access to EO insights
San Francisco CA (SPX) Feb 27, 2023
Capella Space, the world's leading provider of best quality, high resolution Synthetic Aperture Radar (SAR) imagery for a wide range of government and commercial applications, today announced the launch of its Analytics Partner Program to meet the increasing global demand for geospatial products and solutions that leverage the power of SAR. While many organizations can benefit from information derived from SAR data, they often lack the tools to analyze and interpret the data at scale. This new program, ... read more

ADVERTISEMENT
ADVERTISEMENT
EARTH OBSERVATION
Crew-6 ready for launch and a program of scientific studies on ISS

Farming on the Moon

SpaceX Dragon crewed flight to ISS pushed back 24 hours

Russia claims Progress leak caused by an "external impact"

EARTH OBSERVATION
World's first 3D-printed rocket Terran 1 is ready for its maiden flight

NASA, SpaceX delay Sunday Crew-6 flight until Monday

SpaceX Endeavour's crew arrive at KSC ahead of launch

Flight Crew Arrives at NASA's Kennedy Space Center for Crew-6 Mission

EARTH OBSERVATION
Drilling the Marker Band Again: Sols 3750-3751

Better tools needed to determine ancient life on Mars

Another Busy Day on Mars: Sol 3749

Perseverance set to begin third year on Mars at Jezero Crater

EARTH OBSERVATION
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

EARTH OBSERVATION
Space Daily retools to AI/ML centric Content Management System

Public work begins on UK's largest commercial satellite control centre

AFRL establishes one-stop shop for partnerships

Sidus Space secures additional launches with SpaceX

EARTH OBSERVATION
Exploring the Valley of the Kings with radar

A more sustainable way to generate phosphorus

Scientists identify new mechanism of corrosion

JEMCA, a new electron microscope center to advance in research into structural biology and new materials

EARTH OBSERVATION
Nanosatellite shows the way to RNA medicine of the future

CARMENES project boosts the number of known planets in the solar neighbourhood

"Forbidden" planet orbiting small star challenges gas giant formation theories

Very Large Telescope captures direct images of bright exoplanet

EARTH OBSERVATION
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.