24/7 Space News
TIME AND SPACE
Lightest black hole or heaviest neutron star? MeerKAT uncovers a mysterious object in Milky Way
An artist's impression of the system assuming that the massive companion star is a black hole. The brightest background star is its orbital companion, the radio pulsar PSR J0514-4002E. The two stars are separated by 8 million km and circle each other every 7 days. Credit: Danielle Futselaar (artsource.nl)
Lightest black hole or heaviest neutron star? MeerKAT uncovers a mysterious object in Milky Way
by Staff Writers for UManchester News
Manchester UK (SPX) Jan 19, 2024

An international team of astronomers have found a new and unknown object in the Milky Way that is heavier than the heaviest neutron stars known and yet simultaneously lighter than the lightest black holes known.

Using the MeerKAT Radio Telescope, astronomers from a number of institutions including The University of Manchester and the Max Planck Institute for Radio Astronomy in Germany found an object in orbit around a rapidly spinning millisecond pulsar located around 40,000 light years away in a dense group of stars known as a globular cluster.

Using the clock-like ticks from the millisecond pulsar they showed that the massive object lies in the so-called black hole mass gap.

It could be the first discovery of the much-coveted radio pulsar - black hole binary; a stellar pairing that could allow new tests of Einstein's general relativity and open doors to the study of black holes.

The results are published in the journal Science.

UK project lead Ben Stappers, Professor of Astrophysics at The University of Manchester, said: "Either possibility for the nature of the companion is exciting. A pulsar-black hole system will be an important target for testing theories of gravity and a heavy neutron star will provide new insights in nuclear physics at very high densities."

When a neutron star - the ultra-dense remains of dead star - acquire too much mass, usually by consuming or colliding with another star, they will collapse. What they become after they collapse is the cause of much speculation, but it is believed that they could become black holes - objects so gravitationally attractive that even light cannot escape them.

Astronomers believe that the total mass required for a neutron star to collapse is 2.2 times the mass of the sun. Theory, backed by observation, tells us that the lightest black holes created by these stars are much larger, at about five times more massive than the Sun, giving rise to what is known as the 'black hole mass gap'.

The nature of compact objects in this mass gap is unknown and detailed study has so far proved challenging. The discovery of the object may help finally understand these objects.

Prof Stappers, added: "The ability of the extremely sensitive MeerKAT telescope to reveal and study these objects is a enabling a great step forward and provides us with a glimpse of what will be possible with the Square Kilometre Array."

The discovery of the object was made while observing a large cluster of stars known as NGC 1851 located in the southern constellation of Columba, using the MeerKAT telescope.

The globular cluster NGC 1851 is a dense collection of old stars that are much more tightly packed than the stars in the rest of the Galaxy. Here, it is so crowded that the stars can interact with each other, disrupting orbits and in the most extreme cases colliding.

The astronomers, part of the international Transients and Pulsars with MeerKAT (TRAPUM) collaboration, believe that it is one such collision between two neutron stars that is proposed to have created the massive object that now orbits the radio pulsar.

The team were able to detect faint pulses from one of the stars, identifying it as a radio pulsar - a type of neutron star that spins rapidly and shines beams of radio light into the Universe like a cosmic lighthouse.

The pulsar spins more than 170 times a second, with every rotation producing a rhythmic pulse, like the ticking of a clock. The ticking of these pulses is incredibly regular and by observing how the times of the ticks change, using a technique called pulsar timing, they were able to make extremely precise measurements of its orbital motion.

Ewan Barr from Max Planck Institute for Radio Astronomy, who led the study with his colleague Arunima Dutta, explained: "Think of it like being able to drop an almost perfect stopwatch into orbit around a star almost 40,000 light years away and then being able to time those orbits with microsecond precision."

The regular timing also allowed a very precise measurement of the system's location, showing that the object in orbit with the pulsar was no regular star but an extremely dense remnant of a collapsed star. Observations also showed that the companion has a mass that was simultaneously bigger than that of any known neutron star and yet smaller than that of any known black hole, placing it squarely in the black-hole mass gap.

While the team cannot conclusively say whether they have discovered the most massive neutron star known, the lightest black hole known or even some new exotic star variant, what is certain is that they have uncovered a unique laboratory for probing the properties of matter under the most extreme conditions in the Universe.

Arunima Dutta concludes: "We're not done with this system yet.

"Uncovering the true nature of the companion will a turning point in our understanding of neutron stars, black holes, and whatever else might be lurking in the black hole mass gap."

Research Report:A pulsar in a binary with a compact object in the mass gap between neutron stars and black holes

Related Links
University of Manchester
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Astronomers detect oldest black hole ever observed
Cambridge UK (SPX) Jan 18, 2024
Researchers have discovered the oldest black hole ever observed, dating from the dawn of the universe, and found that it is 'eating' its host galaxy to death. The international team, led by the University of Cambridge, used the NASA/ESA/CSA James Webb Space Telescope (JWST) to detect the black hole, which dates from 400 million years after the big bang, more than 13 billion years ago. The results, which lead author Professor Roberto Maiolino says are "a giant leap forward", are reported in the jou ... read more

TIME AND SPACE
Sierra Space unveils full-scale prototype of expandable space station structure

European crew arrives at ISS on private mission

Salad in space? New study says it's not a healthy choice

Ax-3 Crew Joins Expedition 70 in Space Station for Dual Operations and Research

TIME AND SPACE
CAS Space achieves new milestone with Kinetica 1 Y3 launch deploying 5 satellites

China's LandSpace achieves new feat with Zhuque-3's Vertical Recovery Test

Axiom launches third mission to ISS, carrying European space hopes

Equatorial Launch Australia unveils advanced horizontal integration facility

TIME AND SPACE
Buried water ice at the Martian equator

Sols 4076-4077: Driving Into Springtime

A Fractured Filled Plan: Sols 4073-4075

Ingenious Flying Robot Phones Home From Mars

TIME AND SPACE
Tianzhou 6 burns up safely reentering Earth

Yan Hongsen's future dreams as 'Rocket Boy'

China's Tianzhou 7 docks with Tiangong Space Station

China Prepares to Launch Tianzhou 7 Cargo Ship to Tiangong Space Station

TIME AND SPACE
Eutelsat OneWeb and Paratus South Africa join forces to enhance satellite connectivity in South Africa

Booz Allen Ventures Invests in Albedo's groundbreaking VLEO satellite technology

AST SpaceMobile Launches $100 Million Stock Offering Amid Strategic Tech Investments

Small solar sails could be the next 'giant leap' for interplanetary space exploration

TIME AND SPACE
Renesas Electronics plays role in Japan's lunar landing mission

Redwire joins forces with Blue Origin on Blue Ring Space Mobility Platform

NASA's Transition to Commercial Space Networks: A Leap in Wideband Communication

LeoLabs partners with NOAA's OSC to develop advanced space traffic coordination system

TIME AND SPACE
Shallow soda lakes show promise as cradles of life on Earth

Key moment in the evolution of life on Earth captured in fossils

ASU talk will examine ethical questions surrounding life in space

Study uncovers potential origins of life in ancient hot springs

TIME AND SPACE
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.