. 24/7 Space News .
ICE WORLD
Large semi-stationary eddies whip warm water toward melting East Antarctic ice shelf
by Staff Writers
Tokyo, Japan (SPX) Nov 03, 2021

For some time, it was not thought that East Antarctica was as vulnerable to basal melting, as the continental shelf in the east is typically occupied by colder waters than the west.

Warm circumpolar deep waters flowing toward the Antarctic continental shelf were recently identified as causing ice shelf melting on the eastern half of the continent, not just in the west. But the precise mechanism of transport of these warm water flows from further offshore has until now remained unknown.

Japanese scientists from the National Institute of Polar Research have now however identified the cause as large, semi-stationary eddies off the Wilkes Land coast whipping the water poleward, a finding that should lead to more accurate predictions of global sea-level rise.

The findings were published in the journal Communications Earth and Environment on August 6.

It has been known for some time that mass loss of the Antarctic ice sheet in West Antarctica (the smaller 'half' of the Antarctic continent, separated from much larger East Antarctica by the Transantarctic Mountains) has been contributing to global sea level rise over many decades. Recent studies however have shown that ice mass loss in the Wilkes Land sector in East Antarctica has also been contributing to sea level rise for some 40 years.

This ice discharge into the sea, the largest in the eastern part of the continent, comes from the Totten Glacier, a colossal volume of ice that sits atop the southern continent's land mass. The similarly named Totten Ice Shelf meanwhile is a block of ice connected to and buttresses the Totten Glacier, but floats atop the sea rather than sitting atop the land.

The ice shelf works as a sort of 'plug' that normally prevents the Totten Glacier, and the expansive ice in the Aurora Subglacial Basin behind it, from sliding into the ocean. If the plug were removed via melting, this could increase sea levels by more than 3.5 meters (11 feet).

Worryingly, the point at which the Totten Glacier touches the sea (its 'grounding line') lies far below sea level, which means that a cavity of water can open up between the continental shelf and the underside of the ice shelf, and even under parts of the glacier itself. This makes both of them vulnerable to melting if oceanic heat flows into this underside cavity (so-called 'basal melting').

In the Southern Ocean that surrounds Antarctica, the strongest source of such oceanic 'thermal forcing' right across the continent is the warm Circumpolar Deep Water (CDW). The CDW is a product of a mixture of warm, relatively deep and salty waters flowing into it from the rest of the planet's oceans and sits beneath a layer of colder, less salty surface waters.

It is in turn drawn from the intermediate depths of the much larger Antarctic Circumpolar Current (ACC) further offshore and that swirls around the southern continent. It is thought that changes in the flows of warm CDW towards the continental shelf has an impact on this worrisome basal melting.

For some time, it was not thought that East Antarctica was as vulnerable to basal melting, as the continental shelf in the east is typically occupied by colder waters than the west.

However, recent hydrographic observations (measurements of water properties from ocean surface to bottom) have revealed warm inflows of CDW at the ice fronts of the Totten Ice Shelf (and those of the Shirase Glacier Tongue elsewhere in East Antarctica) as well. These measurements are also consistent with satellite observations of high basal melt rates for these regions. Taken together, these data are firm observational evidence of a warm ocean-cryosphere interaction beneath the floating Totten Ice Shelf (and the Shirase Glacier Tongue), which is otherwise unusual in East Antarctica.

But the precise mechanisms of how the offshore-origin warm CDW flows are transported from the ACC to the continental slope and the cavity beneath the Totten Ice Shelf have until now remained something of a mystery.

So the researchers carried out hydrographic observations at the continental slope and where the shelf begins to break up, but more closely spaced ones this time, and then combined this with ocean circulation data from satellites. These data when combined showed that there were cyclonic eddies of water that are semi-stationary off the Sabrina Coast of Wilkes Land and work to whip the warm waters poleward.

"The warm CDW circulation from the offshore ACC to the shelf break appears akin to an intricate 'highway junction' with some 'fueling stations' provided by multiple eddies off the Totten Ice Shelf on the Sabrina Coast," said Daisuke Hirano, an assistant Professor at National Institute of Polar Research and a lead researcher involved with the study.

Having identified the mechanism for transport of warm offshore waters poleward, the team now wants to extend their analysis to understanding the interaction between these ocean waters and the ice directly at the underside of the Totten Ice Shelf. Taken together, this should assist the development of better predictions of global sea-level rise.

Research paper


Related Links
Research Organization of Information and Systems
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Icy 'Glue' May Control Pace of Antarctic Ice-Shelf Breakup
Pasadena CA (JPL) Oct 18, 2021
Researchers at NASA's Jet Propulsion Laboratory in Southern California and the University of California, Irvine, have discovered an ice process that may have caused a Delaware-size iceberg to break off Antarctica's immense Larsen C ice shelf in the Southern Hemisphere winter of 2017. The finding that melange - a mixture of windblown snow, iceberg bits, and sea ice lodged in and around ice shelves - is critical in holdi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Making space travel inclusive for all

Russia will fly four tourists into space in 2024

Could Russia's Zeus TEM be a gamechanger for India's space ambitions

Humidity caused corrosion of Starliner capsule valves, Boeing, NASA say

ICE WORLD
NASA, SpaceX reschedule Crew-3 launch due to weather

Kuaizhou lifts off successfully, places satellite in orbit

NASA seeks input to position mega-rocket for long-term exploration

Crew-3 astronauts launch to Space Station alongside microgravity research

ICE WORLD
Ingenuity Mars Helicopter Flight 14 Successful

You can help train NASA's rovers to better explore Mars

NASA Mars Rover and Helicopter models to go on national tour

China's Mars orbiter resumes communications with Earth

ICE WORLD
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

ICE WORLD
NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

Verizon to use Amazon satellites for broadband Internet in rural areas

From Polar Bears to Polar Orbits

Conclusions from Satellite Constellations 2 Released

ICE WORLD
Gaming giant Epic pulls back on Fortnite China over crackdown

Reinventing steelmaking for a green revolution

VR technology enables users to see individual cells in human body

The New York 'canners' recycling discarded bottles to survive

ICE WORLD
Scientists measure the atmosphere of a planet 340 light-years away

The upside-down orbits of a multi-planetary system

How to find hidden oceans on distant worlds? use chemistry

Are we alone in the Universe? NASA calls for a "New Framework"

ICE WORLD
Scientists find strange black 'superionic ice' that could exist inside other planets

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.