. 24/7 Space News .
SPACE MEDICINE
Iron nanorobots show their true mettle
by Staff Writers
Thuwal, Saudi Arabia (SPX) Jan 29, 2020

By combining low-power magnetic fields, which agitates nanowires, with laser heating and drug delivery, target cells can be killed efficiently.

Drug-coated iron nanowires that can be guided to the site of a tumor using an external magnetic field before activating a three-step cancer-killing mechanism could provide an effective option for cancer therapy.

Co-developed by KAUST researchers, these nanowires release their drug cargo inside cancer cells, while also punching holes in the cell's membrane and delivering a blast of heat. While the combination therapy maximizes cancer cell death, its highly targeted nature should minimize side effects.

Iron was the obvious material to make the nanowires, says Jurgen Kosel, who leads the group at KAUST, which includes Jasmeen Merzaban and Boon Ooi, and who co-led the work with researchers from CIC biomaGUNE in San Sebastian, Spain.

The first consideration is safety. "Iron, in molecular form, is a native material in our bodies, essential for oxygen transport," Kosel explains. The nanowires comprise an iron core, coated with an iron oxide shell. "Iron-oxide-based nanomaterials have been approved by regulatory bodies for use in magnetic resonance imaging and as a dietary supplement in cases of nutrition deficiency," he says.

In addition to their biocompatibility, the magnetic properties of iron-based materials are a key benefit. "Using harmless magnetic fields, we can transport them; concentrate them in the desired area; rotate or make them vibrate, such as we did in this study; and even detect them through magnetic resonance imaging," says Aldo Martinez-Banderas, a member of Kosel's team. Applying low-power magnetic fields, the team agitated the nanowires in a way that opened the membrane of target cells, inducing cell death.

The additional advantage is that core-shell nanowires strongly absorb near-infrared light, heating up as they do so. Because light at this wavelength can penetrate far into the body, the nanowires could be heated using lasers directed at the tumor site. "The core?shell nanowires showed an extremely high photothermal conversion efficiency of more than 80 percent, which translated into a large intracellular heat dose," Martinez-Banderas says.

Finally, the anticancer drug doxorubicin was attached to the nanowires via pH-sensitive linkers. As the tumor environment is typically more acidic than healthy tissue, the linker selectively degraded in or near tumor cells, releasing the drug where it is needed. "The combination of treatment resulted in nearly complete cancer cell ablation and was more effective than individual treatments or the anticancer drug alone," Martinez-Banderas says.

"Taken together, the capabilities of iron-based nanomaterials make them very promising for the creation of biomedical nanorobots, which could revolutionize healthcare," Kosel adds. "While this might seem futuristic, the developments are well on their way."

Research paper


Related Links
King Abdullah University Of Science and Technology
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
UNC expert helps treat astronaut's blood clot during NASA mission
Chapel Hill NC (SPX) Jan 06, 2020
"My first reaction when NASA reached out to me was to ask if I could visit the International Space Station (ISS) to examine the patient myself," said Stephan Moll, MD, UNC School of Medicine blood clot expert and long-time NASA enthusiast. "NASA told me they couldn't get me up to space quickly enough, so I proceeded with the evaluation and treatment process from here in Chapel Hill." Moll was the only non-NASA physician NASA consulted when it was discovered that an astronaut aboard the ISS had a d ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
The science behind and beyond Luca's mission

Record-Setting NASA Astronaut, Crewmates Return from Space Station

Record-breaking US astronaut returns to Earth

NASA astronaut's record-setting mission helps scientists for future missions

SPACE MEDICINE
Aerojet Rocketdyne delivers RL10 engines that will help send NASA astronauts to deep space

Changing the way NASA keeps it cool

Rocket Lab successfully launches U.S. spy satellite

India plans to send 50 satellite launch vehicles into orbit within next 5 years

SPACE MEDICINE
MAVEN explores Mars to understand radio interference at Earth

Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

SPACE MEDICINE
China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

China's space-tracking vessels back from missions

SPACE MEDICINE
Azercosmos and Infostellar to enter into Ground Station Partnership

OneWeb lifts off: Next batch ready to launch

Space science investment generates income and creates jobs

Northrop Grumman breaks ground for expanded satellite manufacturing facilities in Gilbert, Arizona

SPACE MEDICINE
AFRL, partners develop innovative tools to accelerate composites certification

AFRL, Partners Develop Innovative Tools To Accelerate Composites Certification

UNH researchers find clues to how hazardous space radiation begins

Can wood construction transform cities from carbon source to carbon vault

SPACE MEDICINE
NASA's Webb will seek atmospheres around potentially habitable exoplanets

To make amino acids, just add electricity

AI could deceive us as much as the human eye does in the search for extraterrestrials

NESSI comes to life at Palomar Observatory

SPACE MEDICINE
Pluto's icy heart makes winds blow

Why Uranus and Neptune are different

Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.