. 24/7 Space News .
EARTH OBSERVATION
Identifying land cover from outer space
by Staff Writers
Leipzig, Germany (SPX) Apr 21, 2020

Map of Germany, land cover. The algorithm identifies 19 different types of crops, accurate to 88 percent.

Having detailed land cover information is important for a better understanding of our environment - for example, to estimate ecosystem services such as pollination or to quantify nitrate and nutrient inputs in water bodies. This information is increasingly obtained from satellite images with high temporal and spatial resolution.

However, clouds often prevent the view from space to the earth's surface. The dynamic use of machine learning models can take this local cloud cover into account without resorting to commonly used interpolation methods. This is shown by UFZ scientists in a study published in the journal Remote Sensing of Environment. Their algorithm recognises 19 different types of crops, accurate to 88 percent.

"If we can determine the cultivated crop for each agricultural field, we can draw conclusions not only about nutrient requirements but also about the nitrate load of surrounding waters," explains Sebastian Preidl, scientist in the Landscape Ecology department at UFZ.

The information could also be used, for example, to better initiate actions to protect wild bee populations. "We can only protect a region's biological diversity effectively if we have a clear picture of the spatial land cover distribution," explains Preidl.

Earth observation satellites of the Copernicus program founded by the European Space Agency (ESA) provide high-resolution data in time and space and enable continuous monitoring of the land surface on an ecologically relevant scale. Sentinel-2 satellite images captured at regular time intervals in 9 spectral bands formed the basis for Preidl's work. From these spectral time series, researchers can derive land cover information for their study area.

Cloud occurrence is a major challenge when dealing with time series of optical satellite data. Despite numerous satellite images, frequent cloud cover can lead to larger data gaps in the spectral time series. At the same time, a sufficient number of pixels (observations) is required for many plant growth phases to assign the recorded spectral signatures to the corresponding plant species.

These gaps are usually filled by artificially generated data that are interpolated from cloud-free image pixels. "Instead of doing this, we opt for a dynamic application of machine learning models. This means we are generating customised algorithms for every pixel," says Preidl.

"Our algorithm automatically selects cloud-free pixels from the entire satellite image dataset and is not dependent on large-scale cloud-free scenes. To assign a specific crop type to each image pixel, the temporal sequence of cloud-free observations at pixel level is taken into account by a large number of models."

Based on information provided by the federal states, the crop type cultivated is known only for selected agricultural fields. This knowledge is used to train the UFZ models to distinguish between maize and wheat, for example. To determine land cover of the total agricultural area, the scientists have divided Germany into six landscape regions.

"Different crops are grown in the 'Magdeburger Borde' than in the 'Rheingau'," explains Preidl.

"Moreover, one and the same crop species grows differently in the 'Breisgau' than in the 'Uckermark'. Climate and altitude make a big difference."

The result: the researchers' algorithm achieves an accuracy of 88% in identifying 19 different crop types. For the main crops, the success rate is over 90%. At first for the year 2016, they created a land cover map of Germany's agricultural area using around 7000 satellite images. In addition to this map, UFZ researcher can also provide information about the model performance, i.e. the accuracy with which the algorithm detects the plant species for a given pixel.

But the UFZ approach can be exploited in many other ways. In a project with the German Federal Agency for Nature Conservation (BfN), instead of wheat and maize, Preidl's algorithms also distinguish spruce, beech and other tree species. In this way he is investigating how the nature conservation value of forests can be determined using satellite data.

"If we know which tree species predominate in a forest area over time, the effects of storm events, drought damage or pest infestation can be better assessed. A resilient forest is economically and ecologically highly relevant in terms of the sustainable development goals," says Preidl.

"Our methodology can be applied to other regions within and outside Europe, and to other years, by taking into account the respective relevant temporal sequence of cloud-free observations and land use," says Dr Daniel Doktor, head of the Remote Sensing working group of the Department Computational Landscape Ecology at the UFZ, outlining the next steps.

"If this methodology is combined with other models - for example on phenology or ecology - statements can be made not only on species-specific vulnerability to extreme events such as droughts, but also on the future behaviour of ecosystems as carbon sources or sinks," explains Doktor.

Research paper


Related Links
Helmholtz Centre For Environmental Research - Ufz
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
3D models of mountain lakes with a portable sonar and airborne laser
Madrid, Spain (SPX) Apr 20, 2020
The information of the territory provided by the laser technology from an airplane can be combined with data collected in mountain lakes with an inflatable boat and a small echo sounder to obtain three-dimensional maps. The system has been successfully tested by two geologists at the Truchillas glacial lake in Spain. Scientists studying mountain lakes, often located in remote areas that are difficult to access, are faced with the problem of climbing with heavy and costly equipment. Helicopters are ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
NASA researchers look to the future on Earth Day 50

Space Station science payload operations continue amid pandemic

Space tourists will celebrate New Year 2022 in orbit for first time

NASA Astronauts Meir, Morgan, Crewmate Skripochka Return from Space Station

EARTH OBSERVATION
NASA, SpaceX to Launch First Astronauts to Space Station from U.S. Since 2011

Scientific machine learning paves way for rapid rocket engine design

NASA announces first SpaceX crewed flight for May 27

US Rocketry Chief Offers Novel Explanation for Why America Continues to Buy Russia's RD-180 Engines

EARTH OBSERVATION
Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

EARTH OBSERVATION
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

EARTH OBSERVATION
SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

NewSpace Philosophies: Who, How, What?

OneWeb goes bankrupt

EARTH OBSERVATION
Utilizing the impact resistance of the world's hardest concrete for disaster prevention

Sensors woven into a shirt can monitor vital signs

Best homemade mask combines cotton, natural silk, chiffon

Now metal surfaces can be instant bacteria killers

EARTH OBSERVATION
Astronomers discover planet that never was

CHEOPS space telescope ready for scientific operation

HD 158259 and it's six planets almost in rhythm

Simulating early ocean vents shows life's building blocks form under pressure

EARTH OBSERVATION
New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.