24/7 Space News
EXO WORLDS
Hubble observes a changing exoplanet atmosphere
This is an artist's impression of the exoplanet WASP 121-b, also known as Tylos. The exoplanet's appearance is based on Hubble data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet, marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance between Earth and the Sun, placing it on the verge of being ripped apart by its host star's tidal forces. The powerful gravitational forces have altered the planet's shape.
Hubble observes a changing exoplanet atmosphere
by Staff Writers
Paris (ESA) Jan 08, 2024

An international team of astronomers has assembled and reprocessed observations of the exoplanet WASP-121 b that were collected with the NASA/ESA Hubble Space Telescope in the years 2016, 2018 and 2019. This provided them with a unique dataset that allowed them not only to analyse the atmosphere of WASP 121 b, but also to compare the state of the exoplanet's atmosphere across several years. They found clear evidence that the observations of WASP-121 b were varying in time. The team then used sophisticated modelling techniques to demonstrate that these temporal variations could be explained by weather patterns in the exoplanet's atmosphere.

Observing exoplanets - planets beyond our Solar System - is challenging, because of both their distance from Earth and the fact that they mostly orbit stars that are far bigger and brighter than the planets are. This means that astronomers who have been able to observe an exoplanet with a telescope as sophisticated as Hubble typically have to combine all their data in order to get enough information to make confident deductions about the exoplanet's properties.

By combining the observations to increase the strength of the exoplanet signal, astronomers can construct an averaged picture of its atmosphere, but this does not tell them whether it is changing. In other words, they cannot study the weather on other worlds using this averaging method. Studying weather requires far more data of high quality, taken over a wider period of time. Fortunately, Hubble has now been active for such an impressive length of time that a vast archive of Hubble data exists, sometimes with multiple sets of observations of the same celestial object - and that includes the exoplanet WASP-121 b.


WASP-121 b (also known as Tylos) is a well-studied hot Jupiter [1] that orbits a star that lies about 880 light-years from Earth, completing a full orbit in a very brisk 30-hour period. Its extremely close proximity to its host star means that it is tidally locked [2], and that the star-facing hemisphere is very hot, with temperatures exceeding 3000 Kelvins [3]. The team combined four sets of archival observations of WASP-121 b, all made using Hubble's Wide Field Camera 3 (WFC 3). The complete assembled dataset included observations of: WASP-121 b transiting in front of its star (taken in June 2016); WASP-121 b transiting behind its star, also known as a secondary eclipse (taken in November 2016); and two phase-curves [4] of WASP-121 b (taken in March 2018 and February 2019 respectively).

The team took the unique step of processing each dataset in the same way, even if it had been previously processed by a different team. Exoplanet data processing is time consuming and complicated, but nonetheless it was worth it because it allowed the team to directly compare the processed data from each set of observations with one another. One of the principal investigators of the team, Quentin Changeat, an ESA Research Fellow at the Space Telescope Science Institute, elaborates:

"Our dataset represents a significant amount of observing time for a single planet and is currently the only consistent set of such repeated observations. The information that we extracted from those observations was used to characterise (infer the chemistry, temperature, and clouds) of the atmosphere of WASP-121 b at different times. This provided us with an exquisite picture of the planet, changing in time."

After cleaning each dataset, the team found clear evidence that the observations of WASP-121 b were varying in time. While instrumental effects could remain, the data showed an apparent shift in the exoplanet's hot spot [5] and differences in spectral signature (which signifies the chemical composition of the exoplanet's atmosphere) indicative of a changing atmosphere.

Next, the team used highly sophisticated computational models to attempt to understand observed behaviour of the exoplanet's atmosphere. The models indicated that their results could be explained by quasi-periodic weather patterns, specifically massive cyclones that are repeatedly created and destroyed as a result of the huge temperature difference between the star-facing and dark side of the exoplanet. This result represents a significant step forward in potentially observing weather patterns on exoplanets.

"The high resolution of our exoplanet atmosphere simulations allows us to accurately model the weather on ultra-hot planets like WASP-121 b," explained Jack Skinner, a postdoctoral fellow at the California Institute of Technology and co-leader of this study. "Here we make a significant step forward by combining observational constraints with atmosphere simulations to understand the time-varying weather on these planets."

"Weather on Earth is responsible for many aspects of our life, and in fact the long-term stability of Earth's climate and its weather is likely the reason why life could emerge in the first place," added Changeat. "Studying exoplanets' weather is vital to understanding the complexity of exoplanet atmospheres, especially in our search for exoplanets with habitable conditions."

Future observations with Hubble and other powerful telescopes, including Webb, will provide greater insight into weather patterns on distant worlds: and ultimately, possibly to finding exoplanets with stable long-term climates and weather patterns.

[1] Hot Jupiters are a type of exoplanet with no direct Solar System analogue: they are inflated gas giants that orbit very close to their parent stars, often performing a complete orbit in a matter of a few days.

[2] Tidal locking refers to the situation where an orbiting body always presents the same hemisphere to the object that it orbits. For example, the Moon is tidally locked to Earth, which explains why the surface of the Moon always looks the same from our perspective here on Earth. In some cases, the two bodies might be tidally locked to one another, although this is not the case for the Moon and Earth: from the perspective of an astronaut on the Moon, Earth still appears to rotate on its own axis. Tidally locked planets will have an extremely uneven temperature distribution across their entire surface, with the star-facing hemisphere much hotter than the other.

[3] Kelvins (K) are the unit of temperature typically used by many scientists, including astronomers. Kelvins are the same in size as degrees Celsius (?), however, the Kelvin scale is offset from the Celsius scale, which is set to zero at the freezing point of water at one atmosphere of pressure. In contrast, zero on the Kelvin scale is known as absolute zero, and is thought to be the lowest temperature possible, where all kinetic activity of all molecules ceases. 0 K is equivalent to -273.15 ?.

[4] Exoplanet phase curves show the varying amount of light received from a star-exoplanet system as the exoplanet orbits its parent star.

[5] Exoplanet hot spots are, as the name suggests, the hottest spots on the exoplanet's surface. Whilst it would be intuitive to suppose that the hotspot will always be at the point on the planet closest to the star, in fact many studies have shown that exoplanet hotspots are frequently offset. This may be due to wind or other atmospheric patterns on the exoplanets themselves.

+ Additional images at ESA/Hubble

Research Report:Is the atmosphere of the ultra-hot Jupiter WASP-121b variable?

Related Links
Hubble Space Telescope at ESA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
NEOWISE space telescope marks 10 Years on orbit as End of Mission looms
Pasadena CA (JPL) Dec 14, 2023
NASA's NEOWISE has had a busy decade. Since its reactivated mission began on Dec. 13, 2013, the space telescope has discovered a once-in-a-lifetime comet, observed more than 3,000 near-Earth objects, bolstered international planetary defense strategies, and supported another NASA mission's rendezvous with a distant asteroid. And that's just a partial list of accomplishments. But all good things must come to an end: Solar activity is causing NEOWISE - short for Near-Earth Object Wide-field Infrared ... read more

ADVERTISEMENT
ADVERTISEMENT
EXO WORLDS
NASA Revamps Contracts with Blue Origin and Starlab for LEO Station Projects Post-ISS Era

ISS National Lab opens call for technology development research proposals

Exploring Venus and Beyond: NASA Funds Innovative Space Concepts for 2024

Insect compasses, fire-fighting vines: 2023's nature-inspired tech

EXO WORLDS
Self-eating rocket could help UK take a big bite of space industry

China says successfully launches Einstein Probe satellite

DTI Develops Innovative Plasma Engine for Spacecraft: Reduces Earth Fuel Dependency

ULA's Vulcan Centaur launches first American Moon lander in over 50 years

EXO WORLDS
Ready for Contact Science: Sols 4062-4063

Sols 4059-4061: New Year, Old Challenges

Sols 4056-4058 Blog: "Ringing" in a New Year

Recent volcanism on Mars reveals a planet more active than previously thought

EXO WORLDS
China begins 2024 with key Kuaizhou 1A satellite launch

Shenzhou XVII astronauts set for their first spacewalk

China's commercial space sector achieves milestones with series of successful launches

China's space programme: Five things to know

EXO WORLDS
First Batch of Starlink Satellites for Direct-to-Cell Service Launched by SpaceX

Wiseband and Rivada Space Networks join forces for Middle Eastern network expansion

Ovzon 3 Satellite Launched Aboard SpaceX's Veteran Falcon 9 to Geosynchronous Orbit

Euroconsult forecasts $75 Billion in growth for Middle East's Space Sector by 2032

EXO WORLDS
L-SAR 01 Satellite Group Begins Operations, Enhancing China's Disaster Response

Rocket Lab to launch Space Situational Awareness mission for Spire and NorthStar

GESTRA space radar successfully enters final test phase

Mighty MURI brings the heat to test new longwave infrared radiometer

EXO WORLDS
Unlocking the secrets of a "hot Saturn" and its spotted star

Three iron rings in a planet-forming disk

Astronomers Discover Early Ring and Spiral Structures in Young Planetary Disks

COSMIC: The SETI Institute is unlocking the mysteries of the universe with breakthrough technology at the Karl G. Jansky Very Large Array

EXO WORLDS
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.