. 24/7 Space News .
EXO WORLDS
Hubble Delivers First Insight Into Atmospheres Of Potentially Habitable Planets Orbiting Trappist-1
by Staff Writers
Garching, Germany (SPX) Feb 06, 2018

These spectra show the chemical makeup of the atmospheres of four of the Earth-sized planets orbiting within or near the habitable zone of the star TRAPPIST-1. To obtain the spectra, astronomers used the NASA/ESA Hubble Space Telescope to collect light from TRAPPIST-1 passing through the exoplanets' atmospheres as the exoplanets crossed in front of the star. The purple curves show the predicted signatures of gases such as water and methane that absorb certain wavelengths of light.

These gases would be found in a puffy hydrogen-dominated atmosphere similar to those of gaseous planets such as Neptune. The Hubble results, indicated by the green crosses, reveal no evidence of an extended atmosphere in three of the exoplanets (TRAPPIST-1d, f, and e). Additional observations are needed to rule out a hydrogen-dominated atmosphere for the fourth planet (TRAPPIST-1g). The evidence indicates that the atmospheres are more compact than could be measured by the Hubble observations.

An international team of astronomers has used the NASA/ESA Hubble Space Telescope to look for atmospheres around four Earth-sized planets orbiting within or near TRAPPIST-1's habitable zone. The new results further support the terrestrial and potentially habitable nature of three of the studied planets. The results are published in Nature Astronomy.

Seven Earth-sized planets orbit the ultracool dwarf star TRAPPIST-1, 40 light-years away from the Earth. This makes TRAPPIST-1 the planetary system with the largest number of Earth-sized planets discovered so far. These planets are also relatively temperate, making them a tantalizing place to search for signs of life beyond our Solar System. Now, an international team of astronomers has presented a study in which they used the NASA/ESA Hubble Space Telescope to screen four planets in the system - TRAPPIST-1d, e, f and g - to study their atmospheres.

Three of the planets orbit within the system's habitable zone, the region at a distance from the star where liquid water - the key to life as we know it - could exist on the surface of a planet. The fourth planet orbits in a borderline region at the inner edge of the habitable zone. The data obtained rule out a cloud-free hydrogen-rich atmosphere for three of the planets - but for the fourth planet, TRAPPIST-1g, such an atmosphere could not be excluded.

Lead author Julien de Wit, from the Massachusetts Institute of Technology, USA, describes the positive implications of these measurements: "The presence of puffy, hydrogen-dominated atmospheres would have indicated that these planets are more likely gaseous worlds like Neptune. The lack of hydrogen in their atmospheres further supports theories about the planets being terrestrial in nature. This discovery is an important step towards determining if the planets might harbour liquid water on their surfaces, which could enable them to support living organisms."

The observations were made while the planets were in transit in front of TRAPPIST-1. In this configuration a small section of the star's light passes through the atmosphere of the exoplanet and interacts with the atoms and molecules in it. This leaves a weak fingerprint of the atmosphere in the spectrum of the star.

While the results rule out one type of atmosphere, many alternative atmospheric scenarios are still consistent with the data gathered by de Wit and his team. The exoplanets may possess a range of atmospheres, just like the terrestrial planets in our Solar System.

"Our results demonstrate Hubble's ability to study the atmospheres of Earth-sized planets. But the telescope is really working at the limit of what it can do," adds co-author Hannah Wakeford from the Space Telescope Science Institute, illustrating both the power and limitation of Hubble.

These latest findings complement the analysis of ultraviolet observations made with Hubble in 2017 (heic1713) and help us understand more about whether life might be possible in the TRAPPIST-1 system.

By ruling out the presence of a large abundance of hydrogen in the planets' atmospheres, Hubble is helping to pave the way for the NASA/ESA/CSA James Webb Space Telescope.

"Spectroscopic observations of the TRAPPIST-1 planets with the next generation of telescopes - including the James Webb Space Telescope - will allow us to probe deeper into their atmospheres," concludes Michael Gillon, from the University of Liege, Belgium.

"This will allow us to search for heavier gases such as carbon, methane, water, and oxygen, which could offer biosignatures for life."


Related Links
Hubble at ESA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
First Light for Planet Hunter ExTrA at La Silla
Garching, Germany (SPX) Jan 29, 2018
A new national facility at ESO's La Silla Observatory has successfully made its first observations. The ExTrA telescopes will search for and study Earth-sized planets orbiting nearby red dwarf stars. ExTrA's novel design allows for much improved sensitivity compared to previous searches. Astronomers now have a powerful new tool to help in the search for potentially habitable worlds. The newest addition to ESO's La Silla observatory in northern Chile, Exoplanets in Transits and their Atmospheres (E ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Putting down roots in space

Celebrating 60 years of groundbreaking US space science

Russia to start offering spacewalks for tourists

Spinoff 2018 Highlights Space Technology Improving Life on Earth

EXO WORLDS
Genius or joker: Elon Musk flamethrowers spark controversy

SpaceX blasts off Luxembourg government satellite

Putin gives nod to creation of Russian super heavy-lift launch vehicle

Indra and Zero 2 Infinity are teaming up to forge a path to the stars

EXO WORLDS
Opportunity Celebrates 14 Years of Working on Mars

Mount Sharp 'Photobombs' Mars Curiosity Rover

NASA tests power system to support manned missions to Mars

European-Russian space mission steps up the search for life on Mars

EXO WORLDS
China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

EXO WORLDS
Brexit prompts EU to move satellite site to Spain

Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

EXO WORLDS
Quantum control

Virtual reality goes magnetic

A frequency-doubling unit for transportable lasers

Pearly material for bendable heating elements

EXO WORLDS
Stellar embryos in dwarf galaxy contain complex organic molecules

First Light for Planet Hunter ExTrA at La Silla

A new 'atmospheric disequilibrium' could help detect life on other planets

Johns Hopkins scientist proposes new limit on the definition of a planet

EXO WORLDS
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.