. 24/7 Space News .
TECH SPACE
Quantum control
by Staff Writers
Moscow, Russia (SPX) Feb 05, 2018

Superconducting quantum metamaterial consisting of an array of 15 twin qubits embedded in a coplanar wave guide. An SEM image of twin flux qubits (above) and a whole structure (below) are shown. Each qubit consists of two superconducting loops sharing one common central Josephson junction (a-junction) and four identical Josephson junctions located on the outer parts of the loops. The a-junction allows the magnetic flux to tunnel between the loops. The inset is a schematic of a single meta-atom--the twin flux qubit; the phases on nodes are shown.

An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have managed to create the world`s first quantum metamaterial which can be used as a control element in superconducting electrical circuits.

Metamaterials are substances whose properties are determined not so much by the atoms they consist of, but by the atoms' structural arrangement. Each structure is hundreds of nanometers, and has its own set of properties that disappear when scientists try to separate the material into its components. That is why such a structure is called a meta-atom (not to be confused with the common atoms of Mendeleev`s Periodic Table). Any substance consisting of meta-atoms is called a meta-material.

Until recently, another difference between atoms and meta-atoms was that the properties of conventional atoms were described by quantum mechanics equations, while meta-atoms were described by classical physics equations. However, the creation of qubits led to the emergence of a potential opportunity to construct metamaterials consisting of meta-atoms whose state could be described quantum-mechanically. However, this research required the creation of unusual qubits.

"An international team of scientists from NUST MISIS, Karlsruhe Institute of Technology (Germany), and IPHT Jena (Germany), led by Professor Alexey Ustinov, head of the NUST MISIS Laboratory of Superconducting Metamaterials, has created the world`s first so-called "twin" qubit, as well as a metamaterial on its basis. Thanks to the outstanding properties of the new material, it will be possible to create one of the key elements in superconducting electronic devices", said Alevtina Chernikova, Rector of NUST MISIS.

Kirill Shulga, a researcher at the NUST MISIS Laboratory of Superconducting Metamaterials and the first author of the project, noted that a conventional qubit consists of a scheme that includes three Josephson junctions. The twin qubit however is composed of five junctions that are symmetric to the Central axis (see diagram).

"Twin qubits were supposed to serve as a more complex system than the conventional superconducting qubits. The logic here is quite simple: a more complex (artificially complex) system, with a large number of degrees of freedom, has a higher number of factors that can influence its properties. When changing some external properties of the environment where our metamaterial is located, we can turn these properties on and off by turning the twin qubit from one state with certain properties to another with other properties", he added.

This became apparent during the experiment, as the whole metamaterial consisting of twin qubits switched over between two different modes.

"In one of the modes, the chain of qubits transmits electronic radiation in the microwave range very well while remaining a quantum element. In another mode, it turns the superconducting phase by 180 degrees and locks the transmission of electromagnetic waves through itself.

Yet it still remains a quantum system. So with the help of a magnetic field, such a material can be used as a control element in systems for quantum signals (separate photons) in circuits, from which developing quantum computers consist of", said Ilya Besedin, an engineer at the NUST MISIS Laboratory of Superconducting Metamaterials and one of the project's researchers.

It is hard to accurately calculate the properties of one twin qubit on a standard computer compared to the properties of a standard qubit. It is possible to reach the limit of complexity, a level close to or surpassing the capabilities of modern electronic computers, if qubits become several times more complex. Such a complex system can be used as a quantum simulator, i.e. a device that can predict or simulate properties of a certain real process or material.

As the researchers note, they had to sort out lots of theories to correctly describe the processes that occurs in quantum meta-materials. The article "The Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits"is the research's result, and was published in Nature Communications.

Research paper


Related Links
National University of Science and Technology MISIS
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Researchers find first evidence of sub-Saharan Africa glassmaking
Houston TX (SPX) Jan 26, 2018
Scholars from Rice University, University College London and the Field Museum have found the first direct evidence that glass was produced in sub-Saharan Africa centuries before the arrival of Europeans, a finding that the researchers said represents a "new chapter in the history of glass technology." The discovery is discussed in "Chemical Analysis of Glass Beads from Igbo Olokun, Ile-Ife (SW Nigeria): New Light on Raw Materials, Production and Interregional Interactions," which will appear in an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Amazon opens plant-filled "The Spheres" buildings

NASA-JAXA Joint Statement on Space Exploration

Space station spacewalk postponed until mid-February

Microbes may help astronauts transform human waste into food

TECH SPACE
Falcon Heavy rocket ready for fueling, static fire test

SpaceX CEO Sets Date for First Falcon Heavy Rocket Launch

Rocket Lab successfully circularizes orbit with new Electron kick stage

Ariane 5 delivers SES-14 and Al Yah 3 to orbit

TECH SPACE
NASA tests power system to support manned missions to Mars

European-Russian space mission steps up the search for life on Mars

Opportunity prepares software update as Sol 5000 approaches

NASA's Next Mars Lander Spreads its Solar Wings

TECH SPACE
China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

China to select astronauts for its space station

TECH SPACE
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

TECH SPACE
Quantum control

Virtual reality goes magnetic

A frequency-doubling unit for transportable lasers

Updates on recovery attempts for NASA IMAGE mission

TECH SPACE
First Light for Planet Hunter ExTrA at La Silla

A new 'atmospheric disequilibrium' could help detect life on other planets

Johns Hopkins scientist proposes new limit on the definition of a planet

NASA Poised to Topple a Planet-Finding Barrier

TECH SPACE
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.