. 24/7 Space News .
How to 3-D print your own sonic tractor beam
by Staff Writers
Washington DC (SPX) Jan 04, 2017

A method for generating stable ultrasonic levitation of physical matter in air using single beams (also named tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled enabling applications in industrial contactless manipulation and biophysics. Image courtesy Asier Marzo/BristolIG. Watch a video on the research here.

Last year Asier Marzo, then a doctoral student at the Public University of Navarre, helped develop the first single-sided acoustic tractor beam - that is, the first realization of trapping and pulling an object using sound waves from only one direction. Now a research assistant at the University of Bristol, Marzo has lead a team that adapted the technology to be, for all intents and purposes, 3-D printable by anyone (with some assembly required, of course).

In addition to a fully detailed how-to video that the group produced for the public, the results of the work developing this do-it-yourself, handheld acoustic tractor beam will appear this week as an open access paper in Applied Physics Letters, from AIP Publishing.

Sonic levitation is not new, and the use of sound waves to push around macroscopic objects, or create patterns in resting sand and flowing water, is scattered throughout YouTube and has been for years. This technology, however, is not simply sonic levitation, using sound to push objects around.

Based on similar fundamental physics used to create optical traps for decades, these tractor beams are true to their name in that they pull objects, trapping small beads - and even insects - at their foci.

"The most important thing is that it can attract the particle towards the source," said Marzo. "It's very easy to push particles from the source, but what's hard is to pull them toward the source; to attract the particles. When you move the tractor beam, the particle moves, but otherwise the trap is static. It can levitate small plastics; it can also levitate a fly and small biological samples. It's quite handy."

The first versions of the device that proved the concept possible were not much larger than these new, 3-D printable versions. However, their underlying technology was more complex and required expensive electronics.

Much of the expense arose from the array of active components that electronically shaped sound waves, manipulating how and where they interfere to create the resulting object-trapping environment just above the array.

"Previously we developed a tractor beam, but it was very complicated and pricey because it required a phase array, which is a complex electronic system," Marzo said. "In this paper, we made a simple, static tractor beam that only requires a static piece of matter."

The simplicity (and affordability) of this passive, static-matter approach comes from the special architecture of that matter, designed to replace the phase array components and to shape sound waves structurally instead of electronically. As the sound, which now can be generated from a single source, passes through these carefully designed elements, the waves are shaped by the internal structure of the 3-D printed material.

"We can modulate a simple wave using what's called a metamaterial which is basically a piece of matter with lots of tubes of different lengths. The sound passes through these tubes and when it exits the metamaterial, it has the correct phases to create a tractor beam," said Marzo.

With an effect that is primarily determined by the shape of the tubes, the research team focused on optimizing the design to allow fabrication with common 3-D printers, ensuring it could be constructed even by at-home hobbyists.

According to Marzo, this was primarily a challenge in resolution, requiring a design that would not suffer from the limited precision of lower-end 3-D printer nozzles. "We needed to engineer the tubes very well to allow them to be 3-D printed with a normal 3-D printer. A normal 3-D printer has a lot of limitations," he said.

With those limitations overcome, the group developed the rest of the tractor beam system using easily accessible components, such as from the popular open-source electronics supplier, Arduino. They even produced a detailed how-to video for its construction, a link to which is included below.

"There will be a set of instructions with a list of the needed components and a step-by-step video. The components are very simple, like an Arduino and a motor driver, and everything can be bought on Amazon for less than Pounds 50 (about $70)," Marzo said.

Besides seriously impressing dinner guests, these DIY tractor beams have many potential uses and may even become a new tool for studying low-gravity effects on biological samples. Marzo pointed out this type of "micro-gravity" research is already of interest and encouraged biologists to find their own applications for the device.

"Recently there have been several papers about what happens if we levitate an embryo, how does it develop? Or what happens if we levitate bacteria?" he said. "For instance, they discovered salmonella is three times more [virulent] when it's levitated. Certain microorganisms react differently to microgravity."

There are three designs of the device, each with trapping profiles suitable for different object sizes relative to the wavelength of sound used. However, even for the full lab implementation where the group traps heavier objects and even liquids, trapping objects larger than half the wavelength of sound still poses a challenge. For practical frequencies, just above what humans can hear, this limits the size of trappable objects to a few millimeters.

As Marzo and his group work to overcome this challenge and continue to improve the capabilities of their tractor beams, the democratization of their technology paves the way for untold uses and tweaks from the maker community. So, the question really is - what would you do with your own tractor beam?

The article, "Realization of Compact Tractor Beams using Acoustic Delay-Lines," is authored by A. Marzo, A. Ghobrial, L. Cox, M. Caleap, A. Croxford, and B.W. Drinkwater.

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
American Institute of Physics
Space Technology News - Applications and Research

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
'Just the first stage': unique 3D-printed Siberian satellite to orbit Earth
Moscow (Sputnik) Dec 29, 2016
A unique 3D-printed Russian satellite is expected to be put into orbit from the International Space Station next year. Scientists from Tomsk Polytechnic University in Siberia have managed to create a small, fully-functional satellite using a 3D printer. Earlier this year, the Tomsk-TPU-120 satellite was delivered to the International Space Station (ISS); there, it is due to be placed into ... read more

Space station battery replacements to begin New Year's Eve

Launch of Russia's new progress spacecraft set for February 2

Tech show looks beyond 'smart,' to new 'realities'

'Passengers' and the real-life science of deep space travel

SpaceX ready to launch again

Europe and Russia looking at Space Tug Project

India to develop large scale solid fuel mixer

Russia won't be leaving Baikonur anytime soon

Odyssey recovering from precautionary pause in activity

3-D images reveal features of Martian polar ice caps

Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

China sees rapid development of space science and technology

China Space Plan to Develop "Strength and Size"

Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

Russian static discharge measure unit to prolong satellite equipment lifespan

'Just the first stage': unique 3D-printed Siberian satellite to orbit Earth

How to 3-D print your own sonic tractor beam

Saab, UAE sign radar support deal

The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.