. | . |
The blob can learn and teach by Staff Writers Paris, France (SPX) Dec 26, 2016
It isn't an animal, a plant, or a fungus. The slime mold (Physarum polycephalum) is a strange, creeping, bloblike organism made up of one giant cell. Though it has no brain, it can learn from experience, as biologists at the Research Centre on Animal Cognition (CNRS, Universite Toulouse III-Paul Sabatier) previously demonstrated.1 Now the same team of scientists has gone a step further, proving that a slime mold can transmit what it has learned to a fellow slime mold when the two combine. These new findings are published in the December 21, 2016, issue of the Proceedings of the Royal Society B. Imagine you could temporarily fuse with someone, acquire that person's knowledge, and then split off to become your separate self again. With slime molds, that really happens! The slime mold-Physarum polycephalum for scientists-is a unicellular organism whose natural habitat is forest litter. But it can also be cultured in a laboratory petri dish. Audrey Dussutour and David Vogel had already trained slime molds to move past repellent but harmless substances (e.g. coffee, quinine, or salt) to reach their food.1 They now reveal that a slime mold that has learned to ignore salt can transmit this acquired behavior to another simply by fusing with it. To achieve this, the researchers taught more than 2,000 slime molds that salt posed no threat. In order to reach their food, these slime molds had to cross a bridge covered with salt. This experience made them habituated slime molds. Meanwhile, another 2,000 slime molds had to cross a bridge bare of any substance. They made up the group of naive slime molds. After this training period, the scientists grouped slime molds into habituated, naive, and mixed pairs. Paired slime molds fused together where they came into contact.2 The new, fused slime molds then had to cross salt-covered bridges. To the researchers' surprise, the mixed slime molds moved just as fast as habituated pairs, and much faster than naive ones, suggesting that knowledge of the harmless nature of salt had been shared. This held true for slime molds formed from 3 or 4 individuals. No matter how many fused, only 1 habituated slime mold was needed to transfer the information. To check that transfer had indeed taken place, the scientists separated the slime molds 1 hour and 3 hours after fusion and repeated the bridge experiment. Only naive slime molds that had been fused with habituated slime molds for 3 hours ignored the salt; all others were repulsed by it. This was proof of learning. When viewing the slime molds through a microscope, the scientists noticed that, after 3 hours, a vein formed at the point of fusion.
This vein is undoubtedly the channel through which information is shared. The next challenges facing the researchers are to elucidate the form this information takes, and to test whether If Slime Mold A learns how to ignore quinine and Slime Mold B to ignore salt, the biologists wonder whether both behaviors can be transmitted and retained through fusion.
Research Report: Direct transfer of learned behavior via cell fusion in non-neural organisms, David Vogel and Audrey Dussutour. Proceedings of the Royal Society B, 21 December 2016.
Related Links CNRS Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |