. 24/7 Space News .
SOLAR SCIENCE
How scientists predicted corona's appearance during total solar eclipse
by Lina Tran for GSFC News
Greenbelt MD (SPX) Aug 29, 2018

This visualization shows the Sun's three-dimensional magnetic field during one full solar rotation. The Predictive Science researchers modeled magnetic field lines in order to calculate the presence of complex structures in the corona. Credits: Predictive Science Inc./NASA Goddard, Joy Ng

It was Aug. 14, 2017, just one week before the Moon would cross paths with the Sun and Earth, casting its shadow across the United States. The entire country buzzed with anticipation for the fleeting chance to see the corona, the Sun's tenuous outer atmosphere.

But the wait was uniquely nerve-wracking for a group of scientists at Predictive Science Inc., a private research company in San Diego: They had just published a prediction of what the corona would look like on Aug. 21, the day of the total solar eclipse. How would their prediction - the result of a complex numerical model and tens of hours of computing - compare to the real thing?

"Waiting for totality, you know exactly what you've predicted and what you're expecting," Predictive Science researcher Zoran Mikic said. "Because you work with the model so much and see the prediction so many times, it's burned into your brain. There's a lot of anxiety because if you're totally wrong, it's a bit embarrassing."

The Predictive Science researchers used data from NASA's Solar Dynamics Observatory, or SDO, to develop a model that simulates the corona. Their model uses measurements of magnetic fields on the Sun's surface to predict how the magnetic field shapes the corona. Their work was supported by NASA, the National Science Foundation and the Air Force Office of Scientific Research. Mikic is the lead author of a paper summarizing their work and published in Nature Astronomy on Aug. 27, 2018.

Coronal science is deeply rooted in the history of total eclipses; even with state-of-the-art technology, it's only during a total eclipse that scientists can resolve the lowest region of the corona, just above the Sun's surface. This dynamic part of the solar atmosphere is threaded with complex magnetic fields that supply the energy for tremendous eruptions like flares and coronal mass ejections.

As particles and radiation from solar explosions travel out from the Sun, they can manifest as disturbances in near-Earth space, known as space weather. Just as variable as the weather we experience on Earth, space weather can disrupt communications signals, astronauts and satellites in orbit, or even power grids.

The ability to forecast and predict space weather - much like we do terrestrial weather - is critical to mitigating these impacts, and models such as Predictive Science's are key tools in the effort.

Eclipses offer a unique opportunity for researchers to test their models. By comparing the model's corona prediction to observations during the eclipse itself, they could assess and improve the performance of their models.

The model the Predictive Science team used for the August 2017 eclipse was their most complex yet in two decades of eclipse-predicting.

Greater complexity demands more computing hours, and each simulation required thousands of processers and took about two days of real time to complete. The research group ran their model on several supercomputers including facilities at the University of Texas at Austin's Texas Advanced Computer Center; the San Diego Supercomputer Center at the University of California San Diego; and the Pleiades supercomputer at the NASA Advanced Supercomputing facility at NASA's Ames Research Center in Silicon Valley, California.

In addition to SDO's maps of the Sun's magnetic field, the model used SDO observations of prominences - snakelike structures made of cool, dense solar material that protrude from the Sun's surface. Prominences form in stressed parts of the magnetic field, where it's twisted into a rope and capable of erupting if overwound.

The researchers also included new calculations for coronal heating. We don't yet understand how the corona blazes upwards of 2 million degrees Fahrenheit, while just 1,000 miles below, the underlying surface simmers at a balmy 10,000 F. One theory proposes electromagnetic waves - called Alfven waves - launched from the Sun's churning surface rush out into the corona, heating particles as they propagate outwards, a bit like how ocean waves push and accelerate surfers toward the shore.

By accounting for prominences and these tiny - but numerous - waves, the scientists hoped to paint an increasingly detailed portrait of the corona's complex behavior.

After the eclipse, the group found their prediction bore a striking resemblance to the Aug. 21, 2017, corona, although the model lacks many finer structures. Both the prediction and photos from the ground taken on the day of the eclipse show three helmet streamers - immense, petal-shaped structures that form over a network of magnetic loops. The strength of the comparison supports advances in the new model.

Scientists have always known the twisted magnetic fields underlying prominences are an important part of the Sun, but the team's earlier models weren't sophisticated enough to reflect it. The same is true for the waves heating the corona. "In some sense, the model's performance tells us the new heating model is headed in the right direction," Mikic said. "It's certainly showing improved results. We should pursue and refine it further."

In the business of eclipse predictions, it helps when the Sun is quiet, or less active. In August 2017, the Sun was in one such quiet phase, moving steadily toward a period of low solar activity in its approximately 11-year cycle.

The scientists fed their model with magnetic field data collected from the Sun's Earth-facing side over the preceding 27 days - the time it takes the Sun to complete one full rotation - since they currently don't have a way to observe the entire spherical solar surface all at once. With that approach, measurements taken at the beginning of the 27-day period - from parts of the Sun's surface that have subsequently rotated toward the back where they can no longer be seen - are more likely to grow outdated than those taken at the end. But in times of diminished solar activity, the magnetic field isn't quick to change, so even 27-day-old data is useful.

One discrepancy between the prediction and the observations is a skinnier feature, called a pseudostreamer, that jets out from the Sun's upper-right. The researchers determined their model missed the pseudostreamer because the magnetic field changed in that specific region during the data collection. A different model's prediction successfully captured this pseudostreamer, Mikic said, because it appears to have estimated the magnetic field more accurately there.

"The biggest thing I take away from this is they've got a sophisticated model that looks good, but they're limited by their observations," said Alex Young, a solar scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who wasn't involved with the study. "What the model misses is a matter of the Sun changing, and that's something they can't handle without enough observations from the right places."

Testing a model like this so thoroughly supports the idea that, with more data and diverse vantage points, scientists can better calculate the Sun's finer dynamics - and ultimately improve their ability to forecast space weather events that can interfere with technology and astronauts in space.

Just under a year after millions glimpsed the corona themselves during the total eclipse, on Aug. 12, 2018, NASA launched Parker Solar Probe on its way to actually fly through the corona, going closer to the Sun than any spacecraft before.

Parker Solar Probe will send back to Earth observations from inside the corona itself, which researchers can add to their models, filling crucial knowledge gaps in the corona's complicated physics.

Mikic said models like theirs can complement the mission by contextualizing the spacecraft's journey through the corona. Scientists have never worked with data collected so close to the Sun. By modeling the entire corona - the bigger picture - researchers will provide crucial perspective on Parker's surroundings as it ventures into entirely unexplored territory.

"This is amazing science for Parker Solar Probe and from the eclipse, that shares one key purpose," said Thomas Zurbuchen, associate administrator at NASA Headquarters in Washington. "Beyond the science, this is about really advancing our understanding of and ability to predict space weather, a major impact we can have at NASA."


Related Links
Eclipses and Transits at NASA
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
Chinese scientists intend to chase solar eclipse in space
Beijing (XNA) Aug 20, 2018
Total solar eclipses formed by the moon shadowing the sun are spectacular opportunities for scientists to observe the sun's corona, but too short and rare to capture. So Chinese scientists have put forward a novel idea to view a total solar eclipse in space by using the earth to cover the sun, so they might have a longer and more accurate observation and study the source of solar storms. NASA's Parker Solar Probe, the fastest spacecraft in history, blasted off on Sunday, on a mission to stud ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Students experience the power of controlling satellites in space

Roscosmos, Abu Dhabi discuss UAE cosmonaut's month-long flight to ISS

Heat shield install brings Orion spacecraft closer to space

Interns create dynamic visualization of NASA's space-to-ground communications resources

SOLAR SCIENCE
Space launch training cooperation

Commercial Spaceports 2018

Chinese private space company to launch first carrier rocket

GEOStar-3 mission success enabled by Aerojet Rocketdyne XR-5 Hall Thruster System

SOLAR SCIENCE
NASA's InSight passes halfway to Mars, instruments check in

Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

SOLAR SCIENCE
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

SOLAR SCIENCE
Artwork unveiled on exoplanet satellite

Successful capital raising sees Kleos Space Launch on the ASX

Three top Russian space industry execs held for 'fraud'

ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

SOLAR SCIENCE
Wireless communication breaks through water-air barrier

A materials scientist's dream come true

NASA Langley collaborates with industry to develop space technologies

Marines conduct field test of laser-based communications system

SOLAR SCIENCE
Infant exoplanet weighed by Hipparcos and Gaia

Infant exoplanet weighed by Hipparcos and Gaia

Discovery of a structurally 'inside-out' planetary nebula

Under pressure, hydrogen offers a reflection of giant planet interiors

SOLAR SCIENCE
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.