. 24/7 Space News .
ROCKET SCIENCE
Hitting the brakes at Alpha Centauri
by Tomasz Nowakowski for AstroWatch
Los Angeles CA (SPX) Mar 15, 2017


According to a paper published by Heller and Hippke, the spacecraft's solar sail would be redeployed upon arrival so that it would be optimally decelerated by the incoming radiation from the stars.

While one of the most important challenges for future interstellar travel is to how send a probe to other stellar system relatively fast, another issue that needs to be resolved is how to successfully slow down such a spacecraft once it gets there. Recently, two German researchers have proposed a solution addressing this problem, presenting a method that would flawlessly decelerate an interstellar craft sent to our neighboring system Alpha Centauri.

Although the Alpha Centauri star system is located about 4.37 light years away from the Earth, there is a concept of sending a fleet of tiny spacecraft which could reach this system within 20 years. The initiative, known as Breakthrough Starshot, aims to develop an ultra-light light sail that can be accelerated to 20 percent of the speed of light, allowing to get there relatively fast. However, as traveling with a velocity of about 133 million mph (215 million km/h) could result in overshooting the star, there is a need to develop a method ensuring a successful deceleration of an interstellar probe.

That is why Rene Heller and Michael Hippke of the Max Planck Institute for Solar System Research in Gottingen, Germany, have lately studied a concept of slowing down a spacecraft at Alpha Centauri by utilizing the radiation and gravity of stars in this system. They are convinced that photon pressures of the stellar triple consisting of Alpha Centauri A, Alpha Centauri B, Proxima Centauri can be used together with gravity assists to decelerate an incoming fleet of solar sail-based craft.

"I think our concept of slowing down interstellar spacecraft using the stellar photons might become part of a range of methods that at some point will be taken into account for real mission planning like for Breakthrough Starshot or follow-up missions. So I would say, we delivered one piece of the puzzle," Heller told Astrowatch.net.

The scientists refer to their technique as a photogravitational assist. It would allow multiple stellar flybys in the Alpha Centauri system and deceleration of a sail into a bound orbit. Moreover, it could also enable sample return missions to Earth.

According to a paper published by Heller and Hippke, the spacecraft's solar sail would be redeployed upon arrival so that it would be optimally decelerated by the incoming radiation from the stars. Furthermore, once at Alpha Centauri the probe would not only be repelled by the stellar radiation, but it would also be attracted by the star's gravitational field. The calculations in order to test the feasibility of the method were based on a space probe weighing less than 100 grams in total, which is mounted to a 100,000-square-meter sail.

In particular, the plan is to use the stellar pressure from star A to brake and deflect the probe toward Alpha Centauri B, where it would arrive after just a few days. Afterward, the sail would be slowed again and catapulted towards Proxima Centauri, where it would arrive after 46 years. Due to the fact that last year an Earth-like planet was discovered that is orbiting Proxima Centauri, such a decelerated probe could deliver crucial information about this nearby alien world.

"Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields," the paper reads.

What is noteworthy, the photogravitational assist could be also performed in our solar system. The scientists note that a spacecraft could be accelerated to interstellar velocities using solar photons rather than using additional expensive technologies such as ground-based laser launch systems.

"The sun as a star could equally well be used to steer a photon sail. Solar system missions would actually be a natural intermediate step to test the technologies before we step out to other stars," Heller said.

Currently, the researchers work on improving their technique what will allow to save much of the flight time to the system with a full stop at Proxima b. This might actually put their concept into the horizon of a human lifetime. They also plan to extend their technique to other nearby stars.

ROCKET SCIENCE
Designing new rocket engines that don't blow up
Ann Arbor MI (SPX) Mar 13, 2017
The problem has haunted the space program since Apollo: the flame inside the rocket engine literally spirals out of control, producing forces that can cause the engine to explode. It's one of the reasons why some U.S. military and commercial satellite launches rely on Russian rocket engines to take them to space. Now, a team of researchers at the University of Michigan, Purdue University a ... read more

Related Links
Breakthrough Starshot
Rocket Science News at Space-Travel.Com

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
Russia to Build First New-Generation 'Federation' Spacecraft by 2021

NASA Selects New Research Teams to Further Solar System Research

Two more spacewalks for Thomas Pesquet

Trump's budget would cut NASA asteroid mission, earth science

ROCKET SCIENCE
SpaceX cargo ship returns to Earth

Hitting the brakes at Alpha Centauri

N. Korea's Kim hails engine test as 'new birth' for rocket industry

N.Korea rocket test shows 'meaningful progress': South

ROCKET SCIENCE
Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

ROCKET SCIENCE
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

ROCKET SCIENCE
OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

Start-Ups at the Final Frontier

Russia probes murder of senior space official in jail

ROCKET SCIENCE
Using lasers to create ultra-short pulses

The strangeness of slow dynamics

Ecosystem For Near-Earth Space Control

Airbus ships first high-power all-electric EUTELSAT 172B satellite to Kourou for Eutelsat

ROCKET SCIENCE
Visualizing debris disk "roller derby" to understand planetary system evolution

Protostar blazes bright, reshaping its stellar nursery

Operation of ancient biological clock uncovered

Fossil or inorganic structure? Scientists dig into early life forms

ROCKET SCIENCE
Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.