. | . |
Fossil or inorganic structure? Scientists dig into early life forms by Staff Writers Tallahassee FL (SPX) Mar 16, 2017
An international team of researchers discovered that inorganic chemicals can self-organize into complex structures that mimic primitive life on Earth. Florida State University Professor of Chemistry Oliver Steinbock and Professor Juan Manuel Garcia-Ruiz of the Consejo Superior de Investigaciones Cientificas (Spanish National Research Council) in Granada, Spain published an article in Wednesday's edition of Science Advances that shows fossil-like objects grew in natural spring water abundant in the early stages of the planet. But they were inorganic materials that resulted from simple chemical reactions. This complicates the identification of Earth's earliest microfossils and redefines the search for life on other planets and moons. "Inorganic microstructures can potentially be indistinguishable from ancient traces of life both in morphology and chemical composition," Garcia-Ruiz said. Scientists had seen hints of this in past lab work, but now through Steinbock and Garcia-Ruiz's research, it is clear that this also happened in nature. To do this work, the team of scientists collected and analyzed an extreme form of soda water from the Ney Springs in Northern California. Today this type of water is found in only a few spots worldwide, but it was widespread during the early stages of Earth's existence. By addition of just one other ubiquitous chemical - calcium or barium salt - this water produces tiny structures, such as tubes, helices, and worm-like objects that are reminiscent of the shapes of primitive organisms. The water also generates complex mineral structures that are similar to nacre--the shiny substance of sea shells. The similarities between actual fossils and these inorganic structures go beyond appearance and extend to their chemical nature. This will make it even more complicated for scientists examining early evidence of life on Earth. "Our findings reveal an unusual convergence of simple biological shapes and complex inorganic structures and make the job of identifying earliest microfossils on Earth and life on other planets even harder," Steinbock said. "It's fascinating. How could I identify a fossil if I went to Mars? How could I convince myself that it was once alive? In the future, scientists will need to be even more alert that everything that looks like life is not necessarily life." In addition to Steinbock and Garcia-Ruiz, the research team consisted of Electra Kotopoulou and Leonardo Tamborrino from the Spanish National Research Council in Spain and former Florida State University graduate student Elias Nakouzi.
Cambridge, UK (SPX) Mar 15, 2017 A set of biochemical processes crucial to cellular life on Earth could have originated in chemical reactions taking place on the early Earth four billion years ago, believes a group of scientists from the Francis Crick Institute and the University of Cambridge. The researchers have demonstrated a network of chemical reactions in the lab which mimic the important Krebs cycle present in livi ... read more Related Links Florida State University Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |