![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Paris (ESA) Jul 13, 2020
A collection of intriguing images based on data from ESA's Herschel and Planck space telescopes show the influence of magnetic fields on the clouds of gas and dust where stars are forming. The images are part of a study by astronomer Juan D. Soler of the Max Planck Institute for Astronomy in Heidelberg, Germany, who used data gathered during Planck's all-sky observations and Herschel's 'Gould Belt Survey'. Both Herschel and Planck were instrumental in exploring the cool Universe, and shed light on the many complexities of the interstellar medium - the mix of gas and dust that fills the space between the stars in a galaxy. Both telescopes ended their operational lifetime in 2013, but new discoveries continue to be made from their treasure trove of data. Herschel revealed in unprecedented detail the filaments of dense material in molecular clouds across our Milky Way galaxy, and their key role in the process of star formation. Filaments can fragment into clumps which eventually collapse into stars. The results from Herschel show a close link between filament structure and the presence of dense clumps. Herschel observed the sky in far-infrared and sub-millimetre wavelengths, and the data is seen in these images as a mixture of different colours, with light emitted by interstellar dust grains mixed within the gas. The texture of faint grey bands stretching across the images like a drapery pattern, is based on Planck's measurements of the direction of the polarised light emitted by the dust and show the orientation of the magnetic field. The study explored several nearby molecular clouds all within 1500 light years from the Sun including Taurus, Ophiuchus, Lupus, Corona Australis, Chamaeleon-Musca, Aquila Rift, Perseus, and Orion. In this study, published last year in Astronomy and Astrophysics, the Herschel data were used to calculate the density of the molecular clouds along our line of sight to investigate how the interstellar medium interacts with surrounding magnetic fields. Astronomers have long thought magnetic fields play a role in star formation, along with other factors such as gas pressure, turbulence, and gravity. However, observations of the magnetic fields in and around nearby star-forming clouds have been limited until the advent of Planck. The paper builds upon previous studies by the Planck collaboration to investigate how interstellar matter is likely coupled to these magnetic field lines, moving along them until multiple 'conveyor belts' of matter converge to form an area of high density. This can be seen in some images in the form of 'striations', which is material that appears perpendicular to the filament. These regions continue to receive matter along the magnetic lines until they collapse under their own gravity, becoming cooler and dense enough to create stellar newborns. While the magnetic field is preferentially orientated perpendicular to the densest filaments, it appears that the orientation of the magnetic field changes from parallel to perpendicular with increasing density. However, there appears to be no correlation between the star formation rate and the orientation between filaments and magnetic fields, although the study also finds a correlation between the distribution of projected densities.
![]() ![]() Scientific 'red flag' reveals new clues about our galaxy Daytona Beach FL (SPX) Jul 07, 2020 Figuring out how much energy permeates the center of the Milky Way - a discovery reported in the July 3 edition of the journal Science Advances - could yield new clues to the fundamental source of our galaxy's power, said L. Matthew Haffner of Embry-Riddle Aeronautical University. The Milky Way's nucleus thrums with hydrogen that has been ionized, or stripped of its electrons so that it is highly energized, said Haffner, assistant professor of physics and astronomy at Embry-Riddle and co-author of ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |