. 24/7 Space News .
EXO WORLDS
Haziness of exoplanet atmospheres depends on properties of aerosol particles
by Staff Writers
Santa Cruz CA (SPX) Jul 14, 2021

Researchers measured the refractive indices at visible wavelengths (n) for haze samples created under a range of conditions.

Many exoplanets have opaque atmospheres, obscured by clouds or hazes that make it hard for astronomers to characterize their chemical compositions. A new study shows that haze particles produced under different conditions have a wide range of properties that can determine how clear or hazy a planet's atmosphere is likely to be.

Photochemical reactions in the atmospheres of temperate exoplanets lead to the formation of small organic haze particles. Large amounts of these photochemical hazes form in Earth's atmosphere every day, yet our planet has relatively clear skies. The reason has to do with how easily haze particles are removed from the atmosphere by deposition processes.

"It's not just haze production but also haze removal that determines how clear the atmosphere is," said Xinting Yu, a postdoctoral fellow at UC Santa Cruz and lead author of the study, published July 12 in Nature Astronomy.

Yu and her colleagues measured the properties of haze particles produced in the laboratory under conditions representative of exoplanet atmospheres, including a range of gas compositions, temperatures, and energy sources. Coauthor Xi Zhang, assistant professor of Earth and planetary sciences at UC Santa Cruz, said laboratory experiments like this are essential for understanding haze formation and its impact on observations.

"We can't bring haze samples back from exoplanets, so we have to try to mimic the atmospheric conditions in the laboratory," he said.

According to Yu, haze removal depends on a critical material property of the particles called surface energy. "Surface energy describes how cohesive or 'sticky' the material is," she said.

Sticky haze particles readily bond with each other when they collide, growing into larger particles that fall out of the atmosphere onto the surface of the planet (a process called dry deposition). They also make good condensation nuclei for cloud droplets and are easily removed by wet deposition. Hazes produced on Earth typically have high surface energy and are therefore 'sticky' and efficiently removed from the atmosphere.

Yu's laboratory experiments show that the hazes produced in exoplanet atmospheres are highly diverse, with properties that depend on the conditions in which they are produced.

"Some of them are similar to the Earth haze, have high surface energy, and are easy to remove, leading to clear skies," she said. "But some of them have very low surface energy, like a non-stick pan; they do not bond with other particles very well and remain as small particles hanging in the atmosphere for a long time."

The study found that a critical factor is the temperature at which the haze particles are created. Hazes produced at around 400 Kelvin (260 F) tended to have the lowest surface energies, leading to less efficient removal and hazier atmospheres. This finding actually corresponds with observed trends, Yu said, noting that exoplanets at temperatures of 400 to 500 K tend to be the haziest.

Cooler planets located in the habitable zones of their host stars are more likely to have clear atmospheres, she said. "We may not have to worry about habitable exoplanets being too hazy for future observations, as hazes tend to have higher surface energies at lower temperatures," Yu said. "So it is easy to remove these hazes, leaving relatively clear atmospheres."

Astronomers are looking forward to having a powerful tool for characterizing exoplanet atmospheres with the upcoming James Webb Space Telescope (JWST). When an exoplanet transits across the face of its star, its atmosphere filters the light from the star, giving astronomers with a sensitive enough telescope (like JWST) an opportunity to identify the chemical components of the atmosphere using transmission spectroscopy.

A hazy atmosphere would interfere with transmission spectroscopy, but the hazes themselves may still yield valuable information, according to Zhang.

"Hazes are not featureless," he said. "With better telescopes, we may be able to characterize the composition of exoplanet hazes and understand their chemistry. But the observations will be very hard to explain without data from laboratory experiments. This study has revealed the huge diversity of haze particles, and understanding their optical properties will be a high priority for future studies."

Research paper


Related Links
University Of California - Santa Cruz
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
TESS discovers stellar siblings host 'teenage' exoplanets
Greenbelt MD (SPX) Jul 14, 2021
Thanks to data from NASA's Transiting Exoplanet Survey Satellite (TESS), an international collaboration of astronomers has identified four exoplanets, worlds beyond our solar system, orbiting a pair of related young stars called TOI 2076 and TOI 1807. These worlds may provide scientists with a glimpse of a little-understood stage of planetary evolution. "The planets in both systems are in a transitional, or teenage, phase of their life cycle," said Christina Hedges, an astronomer at the Bay ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Blue Origin says will fly 18-year-old to space on July 20

NASA solar sail asteroid mission readies for launch on Artemis I

Chinese harvests first batch of 'space rice'

NASA Launches Entrepreneurs Challenge to identify innovative ideas

EXO WORLDS
Ariane 6 targets new missions with Astris kick stage

NASA announces Nuclear Thermal Propulsion Reactor Concept Awards

FAA reveals new system to track space launches

ESA contracts Arianegroup to make a more versatile Ariane 6

EXO WORLDS
NASA studies bigger, better Mars helicopter

Mars Helicopter reveals intriguing terrain for rover team

China Shares New Images of Mars Taken by Zhurong Rover

Zhurong rover visits parachute and backshell

EXO WORLDS
China's Commercial Space Industry

Exercise bike in space helps keep crew fit

Homemade spacesuits ensure safety of Chinese astronauts in space

Mechanical arm is Chinese astronauts' space helper

EXO WORLDS
Space, the final frontier for billionaire Richard Branson

Department of Space's commercial arm NewSpace India can also lease ISRO assets

OneWeb and BT to explore rural connectivity solutions for UK

Russian rocket launches UK telecom satellites

EXO WORLDS
Lockheed Martin opens new spacecraft facility in Florida

DARPA announces researchers to exploit infrared spectrum for understanding 3D scenes

Scientists created several samples of glasses for protection against nuclear radiation

New UK Space Fund aims to make space safer

EXO WORLDS
Four newly found exoplanets may offer insights into Earth's teenage years

TESS discovers stellar siblings host 'teenage' exoplanets

A potential new tracer of exoplanet formation

Haziness of exoplanet atmospheres depends on properties of aerosol particles

EXO WORLDS
Juno tunes into Jovian radio triggered by Jupiter's volcanic moon Io

The mystery of what causes Jupiter's X-ray auroras is solved

Surface of Jupiter's moon Europa churned by small impacts

Ride with Juno as it flies past Jupiter and Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.