. | . |
Scientists created several samples of glasses for protection against nuclear radiation by Staff Writers Yekaterinburg, Russia (SPX) Jul 15, 2021
An international research team, including physics from Russia, has created new glasses for protection against X-ray and gamma radiation. Scientists could select new components that improved the characteristics of the samples and allowed to reduce the amount of lead in the glass composition. Physicists engineered several samples of glasses. One of the latest results - glasses based on barium fluoride - was described by the team in the Optic magazine. But the best results have bismuth borate glasses. Its radiation protection characteristics (mean-free-path, half-value layer) are better than commercial analogs. The features of these samples are described in the Scientific Reports. "Gamma-ray is using in many fields like industrial (to detect defects in metal casting), medical (to treat malignant and cancerous tumors), agriculture (to control the degree of ripeness and extend the shelf life of fruits and vegetables) and space applications, etc," says Karem Abdelazim Gaber Mahmud, co-author of the research articles, research engineer at the Ural Federal University (Russia), an employee of the Nuclear Material Authority (Egypt). "Gamma radiation has significant penetrating depths, so we are faced with the task of creating a material that could provide maximum protection and the necessary safety for workers." Commercial radiation shielded glasses contain predominantly lead and phosphate. Due to its high density, lead is one of the most effective protection against gamma-ra?. But this is a heavy toxic metal. Lead glass can weigh up to several hundred kilograms. Therefore, scientists worldwide try to find the optimal composition, components that would help lighten the weight of the glass, reduce the thickness, and lower cost price. Another problem is that after exceeding a certain percentage of additive materials, the glasses lose their clarity, just as after absorbing a certain dose of radiation. Therefore, on the one hand, it is necessary to minimize the amount of lead in the glass composition, while maintaining the protective properties, and on the other hand, it is necessary to extend the shelf life of the end-product, its clarity. Scientists from Jordan, Saudi Arabia, Turkey, Malaysia, China, Egypt are working most actively in this direction. "Scientists began to create protective glasses in the late 1940s, in the early 1950s, during the formation of nuclear power," says Oleg Tashlykov, research co-author, associate professor at Ural Federal University. "That time in England, America, Russia they were solving the problem of monitoring radiation-hazardous work. They came up with several options for glasses with different additives, but everywhere the basic components are lead and phosphate. The current trend is to choose such a composition to minimize the volume of lead, or better to replace it with another metal." Note that the protective properties of glass researchers have experimentally tested at the Institute of Reactor Materials of the Russian state corporation "Rosatom" (Sverdlovsk region, Russia). The next step is further research of parameters, improvement, and optimization of the composition, commercialization of technology.
Radiation-hardened MOSFET qualified for commercial and military satellites and space power solutions Chandler AZ (SPX) Jun 09, 2021 Power supplies in space applications operate in environments that require enhanced radiation technology to withstand extreme particle interactions and solar and electromagnetic events. These events degrade space-based systems and disrupt operations. To meet this requirement, Microchip Technology Inc. has announced the qualification of its M6 MRH25N12U3 radiation-hardened 250V, 0.21 Ohm Rds(on), metal-oxide-semiconductor field-effect transistor (MOSFET) for commercial aerospace and defense space ap ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |