. 24/7 Space News .
STELLAR CHEMISTRY
Have we detected dark energy
by Staff Writers
London, UK (SPX) Sep 20, 2021

File image of the XENON1T darkmatter detector facility.

Dark energy, the mysterious force that causes the universe to accelerate, may have been responsible for unexpected results from the XENON1T experiment, deep below Italy's Apennine Mountains.

A new study, led by researchers at the University of Cambridge and reported in the journal Physical Review D, suggests that some unexplained results from the XENON1T experiment in Italy may have been caused by dark energy, and not the dark matter the experiment was designed to detect.

They constructed a physical model to help explain the results, which may have originated from dark energy particles produced in a region of the Sun with strong magnetic fields, although future experiments will be required to confirm this explanation. The researchers say their study could be an important step toward the direct detection of dark energy.

Everything our eyes can see in the skies and in our everyday world - from tiny moons to massive galaxies, from ants to blue whales - makes up less than five percent of the universe. The rest is dark. About 27% is dark matter - the invisible force holding galaxies and the cosmic web together - while 68% is dark energy, which causes the universe to expand at an accelerated rate.

"Despite both components being invisible, we know a lot more about dark matter, since its existence was suggested as early as the 1920s, while dark energy wasn't discovered until 1998," said Dr Sunny Vagnozzi from Cambridge's Kavli Institute for Cosmology, the paper's first author. "Large-scale experiments like XENON1T have been designed to directly detect dark matter, by searching for signs of dark matter 'hitting' ordinary matter, but dark energy is even more elusive."

To detect dark energy, scientists generally look for gravitational interactions: the way gravity pulls objects around. And on the largest scales, the gravitational effect of dark energy is repulsive, pulling things away from each other and making the universe's expansion accelerate.

About a year ago, the XENON1T experiment reported an unexpected signal, or excess, over the expected background. "These sorts of excesses are often flukes, but once in a while they can also lead to fundamental discoveries," said co-author Dr Luca Visinelli, from Frascati National Laboratories in Italy. "We explored a model in which this signal could be attributable to dark energy, rather than the dark matter the experiment was originally devised to detect."

At the time, the most popular explanation for the excess were axions - hypothetical, extremely light particles - produced in the Sun. However, this explanation does not stand up to observations, since the amount of axions that would be required to explain the XENON1T signal would drastically alter the evolution of stars much heavier than the Sun, in conflict with what we observe.

We are far from fully understanding what dark energy is, but most physical models for dark energy would lead to the existence of a so-called fifth force. There are four fundamental forces in the universe, and anything that can't be explained by one of these forces is sometimes referred to as the result of an unknown fifth force.

However, we know that Einstein's theory of gravity works extremely well in the local universe. Therefore, any fifth force associated to dark energy is unwanted and must be hidden, or screened, when it comes to small scales, and can only operate on the largest scales where Einstein's theory of gravity fails to explain the acceleration of the Universe. To hide the fifth force, many models for dark energy are equipped with so-called screening mechanisms, which dynamically hide the fifth force.

Vagnozzi and his co-authors constructed a physical model, which used a type of screening mechanism known as chameleon screening, to show that dark energy particles produced in the Sun's strong magnetic fields could explain the XENON1T excess.

"Our chameleon screening shuts down the production of dark energy particles in very dense objects, avoiding the problems faced by solar axions," said Vagnozzi. "It also allows us to decouple what happens in the local very dense Universe from what happens on the largest scales, where the density is extremely low."

The researchers used their model to show what would happen in the detector if the dark energy was produced in a region of the Sun called the tachocline, where the magnetic fields are particularly strong.

"It was really surprising that this excess could in principle have been caused by dark energy rather than dark matter," said Vagnozzi. "When things click together like that, it's really special."

Their calculations suggest that experiments like XENON1T, which are designed to detect dark matter, could also be used to detect dark energy. However, the original excess still needs to be convincingly confirmed. "We first need to know that this wasn't simply a fluke," said Visinelli. "If XENON1T actually saw something, you'd expect to see a similar excess again in future experiments, but this time with a much stronger signal."

If the excess was the result of dark energy, upcoming upgrades to the XENON1T experiment, as well as experiments pursuing similar goals such as LUX-Zeplin and PandaX-xT, mean that it could be possible to directly detect dark energy within the next decade.

Research Report: "Direct detection of dark energy: the XENON1T excess and future prospects"


Related Links
Kavli Institute for Cosmology
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
China releases first batch of gamma photon data from dark matter explorer
Beijing (XNA) Sep 10, 2021
China has released the first batch of gamma photon data obtained by the Dark Matter Particle Explorer (DAMPE), according to Science and Technology Daily on Wednesday. The National Space Science Data Center (NSSDC) and the Purple Mountain Observatory (PMO) of the Chinese Academy of Sciences Tuesday released the scientific data collected by the DAMPE, also known as Wukong or Monkey King. According to the PMO, Wukong's satellite platform and payload have been working normally. It has finished t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
German ESA astronaut Matthias Maurer is ready for his first ISS mission - 'Cosmic Kiss'

Russian Gov't allocates $60Mln to build Soyuz for tourist flights

Dates set for Space Station change of command as Franco-German relations awarded Media prize

Simultaneous presence in space surges to historic maximum of 14 people

STELLAR CHEMISTRY
SKorea plans to launch solid-propellant space launch vehicle in 2024, Defence Ministry says

ABL Space selected for NASA Cryogenic Demonstration Mission

NASA awards launch services contract for GOES-U Mission

SpaceX Inspiration4 mission sent 4 people with minimal training into orbit

STELLAR CHEMISTRY
Justin Simon Shepherds Perseverance through first phase of Martian rock sampling

Take a 3D Spin on Mars and track NASA's Perseverance Rover

NASA confirms thousands of massive, ancient volcanic eruptions on Mars

NASA's Perseverance rover collects puzzle pieces of Mars' history

STELLAR CHEMISTRY
Chinese astronauts return to Earth after 90-day mission

China prepares to launch Tianzhou-3 cargo spacecraft

Chinese astronauts return to earth after 90-day mission

Chinese astronauts complete three-month space mission

STELLAR CHEMISTRY
Russian Soyuz rocket launches 34 new UK satellites

India to revise FDI policy for space sector, says ISRO chief Sivan

Adaptable optical communications to facilitate future low-earth orbit networks

SpaceX launches Starlink satellites into orbit from West Coast

STELLAR CHEMISTRY
China brings astronauts back, advances closer to "space station era"

European facility prepares for haul of samples returning from planetary bodies

Ballistic air guns and mock moon rocks aid in search for durable space fabrics

NASA provides laser for LISA mission

STELLAR CHEMISTRY
Observations in stellar factory indicates start of planet production

How planets may be seeded with the chemicals necessary for life

Planets form in organic soups with different ingredients

Earthlike planets in other solar systems? Look for moons

STELLAR CHEMISTRY
Mushballs stash away missing ammonia at Uranus and Neptune

A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.