. 24/7 Space News .
EXO WORLDS
Planets form in organic soups with different ingredients
by Staff Writers
Boston MA (SPX) Sep 17, 2021

This composite image of ALMA data from the young star HD 163296 shows hydrogen cyanide emission laid over a starfield. The MAPS project zoomed in on hydrogen cyanide and other organic and inorganic compounds in planet-forming disks to gain a better understanding of the compositions of young planets and how the compositions link to where planets form in a protoplanetary disk.

Astronomers have mapped out the chemicals inside of planetary nurseries in extraordinary detail. The newly unveiled maps reveal the locations of dozens of molecules within five protoplanetary disks - regions of dust and gas where planets form around young stars.

"These planet-forming disks are teeming with organic molecules, some which are implicated in the origins of life here on Earth," explains Karin Oberg, an astronomer at the Center for Astrophysics | Harvard and Smithsonian (CfA) who led the map-making project. "This is really exciting; the chemicals in each disk will ultimately affect the type of planets that form - and determine whether or not the planets can host life."

A series of 20 papers detailing the project, appropriately named Molecules with ALMA at Planet-forming Scales, or MAPS, was published in the open-access repository arXiv. The papers have also been accepted to The Astrophysical Journal Supplement as a forthcoming special edition series to showcase the high-resolution images and their implications.

Planets Form in Different Soups
The new maps of the disks reveal that the chemicals in protoplanetary disks are not located uniformly throughout each disk; instead, each disk is a different planet-forming soup, a mixed bag of molecules, or planetary ingredients. The results suggest that planet formation occurs in diverse chemical environments and that as they form, each planet may be exposed to vastly different molecules depending on its location in a disk.

"Our maps reveal it matters a great deal where in a disk a planet forms," says Oberg, the lead author of MAPS I, the first paper in the series. "Many of the chemicals in the disks are organic, and the distribution of these organics varies dramatically within a particular disk. Two planets can form around the same star and have very different organic inventories, and therefore predispositions to life."

CfA graduate student Charles Law led MAPS III, the study that mapped out the specific locations of 18 molecules - including hydrogen cyanide, and other nitriles connected to the origins of life - in each of the five disks. The images were taken with the Atacama Large Millimeter/submillimeter Array (ALMA) in 2018 and 2019. The vast amount of data collected required a 100-terabyte hard drive and took two years to analyze and breakdown into separate maps of each molecule.

The final maps of each disk surprised Law and showed that "understanding the chemistry occurring even in a single disk is much more complicated than we thought." "Each individual disk appears quite different from the next one, with its own distinctive set of chemical substructures," Law explains. "The planets forming in these disks are going to experience very different chemical environments."

Fishing for Planetary Newborns
The MAPS project provided astronomers with opportunities to study more than just the chemical environment of disks.

"Our team used these maps to show where some of the forming planets are located within disks, enabling scientists to connect the observed chemical soups with the future compositions of specific planets," Oberg says.

The effort was led by Richard Teague, a Submillimeter Array fellow at the CfA, who used the data and imagery collected by MAPS to hunt for newborn planets.

Astronomers are confident that planets form in protoplanetary disks, but there is a catch: they can't directly see them. Dense gas and dust, which will last some three million years, shields young, developing planets from view.

"It's like trying to see a fish underwater," Teague says. "We know they're there, but we can't peer that far down. We have to look for subtle signs on the surface of the water, like ripples and waves."

In protoplanetary disks, gas and dust naturally rotate around a central star. The speed of the moving material, which astronomers can measure, should remain consistent throughout the disk. But if a planet is lurking beneath the surface, Teague believes it can slightly disturb the gas traveling around it, causing a small deviation in velocity or the spiraling gas to move in an unexpected way.

Using this tactic, Teague analyzed gas velocities in two of the five protoplanetary disks - around the young stars HD 163296 and MWC 480. Small hiccups in velocity in certain portions of the disks revealed a young Jupiter-like planet embedded in each of the disks. The observations are detailed in MAPS XVIII.

As the planets grow, they will eventually "carve open gaps in the structure of the disks" so we can see them, Teague says, but the process will take thousands of years.

Teague hopes to confirm the discoveries sooner than that using the forthcoming James Webb Space Telescope. "It should have the sensitivity to pinpoint the planets," he says.

Law also hopes to confirm the results by studying more protoplanetary disks in the future.

Law says, "If we want to see if the chemical diversity observed in MAPS is typical, we're going to need to increase our sample size and map out more disks in the same way."

Research paper


Related Links
Center for Astrophysics | Harvard and Smithsonian
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Earthlike planets in other solar systems? Look for moons
Urbana IL (SPX) Sep 10, 2021
Finding an exact copy of the Earth somewhere in the universe sounds like a far-fetched notion, but scientists believe that because Earth happened in our solar system, something similar is bound to exist someplace else. University of Illinois Urbana-Champaign researcher Siegfried Eggl and his colleagues say orbiting moons may play a key role in keeping planets habitable over long periods and identified a method to find them. "In our solar system, we have an average of 20 moons orbiting around each ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
All-female crew in water-tank spaceflight study

US must prepare now to replace International Space Station

Russian Gov't allocates $60Mln to build Soyuz for tourist flights

Simultaneous presence in space surges to historic maximum of 14 people

EXO WORLDS
Glasgow Prestwick Spaceport announces Launch Partner

DLR is developing a Launch Coordination Center

Solar electric propulsion makes Psyche spacecraft go

NASA awards Orion Main Engine contract for future Artemis missions

EXO WORLDS
NASA offers new website to look at Mars rover images

Mars habitability limited by its small size, isotope study suggests

Carbon dioxide reactor makes Martian fuel

Small stature limits Mars' ability to hold water, study finds

EXO WORLDS
China's cargo craft docks with space station core module

China brings astronauts back, advances closer to "space station era"

Chinese astronauts return to Earth after 90-day mission

China prepares to launch Tianzhou-3 cargo spacecraft

EXO WORLDS
India to revise FDI policy for space sector, says ISRO chief Sivan

Adaptable optical communications to facilitate future low-earth orbit networks

SpaceX launches Starlink satellites into orbit from West Coast

China launches Zhongxing-9B satellite

EXO WORLDS
NASA adviser blasts lack of congressional action on space traffic dangers

Nine ways AR and VR used on the International Space Station

Now we're cooking with lasers

Engineering researchers develop new explanation for formation of vortices in 2D superfluid

EXO WORLDS
Cloud-spotting on a distant exoplanet

Cloudy days on exoplanets may hide atmospheric water

Webb Telescope to explore forming planetary systems

Observations in stellar factory indicates start of planet production

EXO WORLDS
Come on in, the water is superionic

Mushballs stash away missing ammonia at Uranus and Neptune

A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.