![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Munich, Germany (SPX) Sep 16, 2021
The Institute of Planetary Research at DLR (German Aerospace Center) is starting construction of a new Sample Analysis Laboratory (SAL) dedicated to the study of rock and dust samples from planetary bodies such as asteroids and the Moon. The first phase will be operational by the end of 2022, on time to welcome samples collected by the Hayabusa2 mission, and fully ready by 2023. A status report will be presented at the Europlanet Science Congress (EPSC) 2021. The 2020s promise a bounty of new missions returning planetary samples to Earth for analysis. Scientists can learn a huge amount about planetary bodies by sending remote sensing orbiters, and even more by 'in situ' exploration with landers and rovers. However, sensitive laboratory instruments on Earth can extract information far beyond the reach of current robotic technology, enabling researchers to determine the chemical, isotopic, mineralogical, structural and physical properties of extra-terrestrial material from just a single, tiny sample. 'The SAL facility will allow us to study samples from a macroscopic level down to the nanometric scale and help us answer key question about the formation and evolution of planetary bodies,' said Dr Enrica Bonato from DLR. 'Sample return provides us with "ground truth" about the visited body, verifying and validating conclusions that can be drawn by remote sensing. SAL will unlock some really exciting science, like looking for traces of water and organic matter, especially in the samples returned from asteroids. These are remnants of "failed" planets, so provide material that gives insights into the early stages of the Solar System and planetary evolution.' The establishment of SAL has taken three years' planning and the facility will see its first instruments delivered in summer 2022. The state-of-the art equipment will allow researchers to image the rock samples at very high magnification and resolution, as well as to determine the chemical and mineralogical composition in great detail. The laboratory will be classified as a "super-clean" facility, with a thousand times fewer particles per cubic metre permitted than in a standard clean room. Protective equipment will be worn by everyone entering in order to keep the environment as clean as possible, and SAL will be equipped with glove boxes for handling and preparation of the samples. All samples will be stored under dry nitrogen and transported between the instruments in dry nitrogen filled containers. Together with other laboratory facilities within the Institute of Planetary Research (including the Planetary Spectroscopy Laboratory and Planetary Analogue Simulation Laboratory), the new SAL will be open to the scientific community for "transnational access" visits supported through the Europlanet 2024 Research Infrastructure. The first studies at SAL will relate to two small, carbonaceous asteroids: Ryugu, samples from which were returned by JAXA's Hayabusa2 mission in late 2020, and Bennu, from which NASA's OSIRIS-REx mission will deliver samples back to Earth in 2023. 'Hayabusa2 and OSIRIS-REx are in many ways sister missions, both in the kind of body being visited, and in the close cooperation of scientists and the sponsoring agencies. International collaboration is an important part of the sample return story, and becomes even more key when it comes to analysis,' said Bonato. 'We are also looking forward to receiving (and potentially curating) samples from Mars's moon, Phobos, returned by JAXA's Martian Moons eXploration (MMX) mission late in the decade. We also hope to receive samples at SAL from the Moon in the early part of the decade from China's Chang'E 5 and 6 missions.' A collaboration with the Natural History Museum and the Helmholtz Center Berlin in Berlin aims to establish an excellence centre for sample analysis in Berlin within the next 5-10 years. In the future, SAL could be expanded into a full curation facility. 'Returned samples can be preserved for decades and used by future generations to answer questions we haven't even thought of yet using laboratory instruments that haven't even been imagined,' added Jorn Helbert, Department Head of Planetary Laboratories at DLR.
![]() ![]() Ballistic air guns and mock moon rocks aid in search for durable space fabrics Cleveland OH (SPX) Sep 14, 2021 The surface of the Moon is a harsh environment with no air, low gravity, dust, and micrometeorites-tiny rocks or metal particles-flying faster than 22,000 mph. These conditions can pose a hazard to astronauts, their dwellings, and spacecraft. Engineers at NASA Glenn Research Center's Ballistic Impact Lab are working to help the agency select materials for future Artemis missions and predict how they will perform while on the lunar surface. The innovative lab, which features a 40-foot-long ai ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |