24/7 Space News
OUTER PLANETS
Guiding JUICE to Jupiter
File image showing JUICE's radar antenna RIME being tested in early development of the Jupiter bound spacecraft.
ADVERTISEMENT
     
Guiding JUICE to Jupiter
by Staff Writers
Paris, France (SPX) Apr 11, 2023

This phenomenal endeavour, led by the European Space Agency, is powered by Airbus technology. Our engineers have rarely faced a greater challenge than enabling such a journey. The JUICE probe will encounter extreme temperatures, intense radiation and decreasing solar energy during its 5 billion kilometre journey. Being self-sufficient in energy generation and storage is key to the mission's success.

Operating in the outer reaches of the solar system, far from the Sun, JUICE uses large solar arrays around the size of a badminton court - 85 m2 - to generate energy.

Divided into ten panels each measuring 2.5x3.5m, JUICE's solar wings will produce energy during its long journey to Jupiter. The solar energy will enable JUICE to carry out 35 fly-bys of Europa, Ganymede and Callisto and generate the 800 watts of power needed to operate the ten scientific instruments on board.

Airbus manufactured the panel structures and the deployment mechanism. Both have been subjected to robust testing to ensure they are ready to face the extremes of temperature the mission will encounter, from -230C at Jupiter up to +110C during Venus flyby, the hottest surface of the spacecraft reaching +250C.

Blowing hot and cold
JUICE's thermal control system is designed to minimise the impact of the external environment on the spacecraft, through the use of high efficiency Multi-Layer Insulation (MLI). MLI will moderate the external temperature during the spacecraft's closest approach to the Sun. It must also limit heat leakage in the cold Jupiter environment, in order to minimise demand for power from the spacecraft's heaters while its instruments are operating. Managing power will be a crucial factor throughout JUICE's mission, given the limited power generated by the spacecraft's solar panels. Jupiter is so far from the Sun that the solar energy it receives is 25 times lower than on Earth.

Aiming for utmost accuracy
With five billion kilometres to cover throughout the mission, four fly-bys to perform and 30 observation overflights, the complexity of the JUICE mission requires accurate navigation. The conventional technique is to improve standard radiofrequency navigation with a camera to take pictures of various objects (planets, stars). These images are returned to Earth for a cross-check. A ground team then tracks and plots the probe's precise trajectory, aiming the spacecraft's instruments toward areas of interest for science.

However this approach is not ideal for the JUICE mission. This is for two reasons: the true position of the moons during their orbit around Jupiter is not known with sufficient accuracy for ground teams to plot a course and it takes JUICE too long to communicate with Earth. A round-trip radio signal takes about one hour and 40 minutes, which prevents the ground team from adapting the probe's trajectory before flying by the moons.

This is why the "EAGLE" autonomous navigation technology which uses images taken by the 'Navcam' camera in real-time was developed. Instead of sending pictures of Jupiter's moons back to the team on Earth to aim the instruments, the JUICE NavCam is able to process them on board, thanks to algorithms based on detection of the edge of the moons. With this information, JUICE can independently refine the viewing angle of its instruments.

Endless innovation
One of Jupiter's mysteries is the planet's enormous magnetic field. The magnetosphere rotates with the planet, capturing swarms of charged particles. This fast rotation creates a natural particle accelerator, causing the particles to release radio waves which can reach Jupiter's icy moons.

It's hoped that by investigating the moons' electrical and magnetic environment, the JUICE mission can increase our knowledge of how this harsh environment 740 million kilometres from the Sun shaped, and continues to shape, the conditions on their surface.

The sensitive instruments on board the probe, including a magnetometer, are designed to record data about Jupiter's magnetic field. However, to make the measurements as accurate as possible, JUICE must ensure that it is 'squeaky clean', in that its own presence and emissions do not disturb the instruments.

To produce such a 'clean' spacecraft was a huge challenge. In order to reduce electric and magnetic emissions and electrostatic interference with the instruments, most of the electronics are installed in two special housings on each side of the probe that help seal in emissions. Additionally, these housings protect the equipment itself from space radiation.

A ten-metre long arm, named Magboom, will keep the most sensitive sensors away from the probe and any electromagnetic interference it may generate while taking measurements.

Airbus engineers have also designed a unique layout for the 23,560 solar cells in JUICE's solar panels to minimise the magnetic field generated by the cells themselves. A conductive layer of indium tin oxide also sits on top of the solar cells to avoid electrostatic disturbances.

The 'reaction wheels', which allow the probe to orient itself in space, are also custom-designed for the mission. They emit 100 times less magnetic energy than wheels that have flown before. Finally, all of the probe's cables - totalling an amazing 15 kilometres - are wrapped in several layers of aluminium to avoid electrical interference.

As shown in this article, science missions are always the most challenging of space missions, but often the most rewarding for the teams who turn them into reality.

Related Links
JUICE at Airbus
The million outer planets of a star called Sol

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
OUTER PLANETS
An unprecedented journey to Jupiter
Berlin, Germany (SPX) Apr 07, 2023
Is there life beyond Earth - perhaps even in the Solar System? This fundamental question continues to motivate the scientific community worldwide. On 13 April 2023, a spacecraft will set off from Europe's spaceport in Kourou, French Guiana, on a long research journey to address this and many other questions. A journey like no other - the European Space Agency's JUpiter ICy Moons Explorer (JUICE) mission will spend eight years making its way to the largest planet in the Solar System, where it will take a ... read more

ADVERTISEMENT
ADVERTISEMENT
OUTER PLANETS
Rocket Lab launches new constellation-class star tracker

Russia will use International Space Station 'until 2028'

NASA Boosts Open Science through Innovative Training

Orion stretches its wings ahead of first crewed Artemis mission

OUTER PLANETS
Elon Musk forms X.AI artificial intelligence company

SpaceX will try to launch most powerful rocket ever Monday

China bans ships from area north of Taiwan Sunday due to 'falling rocket wreckage'

SpaceX prepares for rehearsal, test flight of Starship rocket

OUTER PLANETS
Curiosity gets a major software upgrade

Ingenuity Mars Helicopter completes 50th flight

NASA unveils 'Mars' habitat for year-long experiments on Earth

Slip and Pivot: Sol 3797

OUTER PLANETS
China's inland space launch site advances commercial services

China's Shenzhou XV astronauts complete 3rd spacewalk

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

OUTER PLANETS
'The Space Economy' - an Essential Guide for Investors and Entrepreneurs

Viasat confirms ViaSat-3 Americas set to launch

Taiwan seeks satellite solutions after undersea cables cut

Safran to provide GNSS simulation solutions for Xona's LEO constellation

OUTER PLANETS
Intelsat to Extend Life of Satellite with new Mission Extension Pod

3D-printed rocket maker to focus on bigger vehicle for commercial launches

Tendeg selected by Lockheed Martin as strategic supplier of deployable antennas

SatixFy and Presto Engineering test rad-hard space-grade ASICs

OUTER PLANETS
HD 169142 b, the third protoplanet confirmed to date

Do Earth-like exoplanets have magnetic fields

New paper investigates exoplanet climates

JWST confirms giant planet atmospheres vary widely

OUTER PLANETS
Europe's JUICE mission blasts off towards Jupiter's icy moons

Juno Marks 50 Orbits Around Jupiter

A Jovian journey to the icy worlds of a Gas Giant

Guiding JUICE to Jupiter

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.