. 24/7 Space News .
ICE WORLD
Glacier calving and a whole lot of mixing
by Staff Writers
Paris (ESA) Dec 02, 2022

Glaciers around the world are generally retreating - a serious consequence of climate change. The image below shows how the William Glacier has retreated since 1955, roughly 3 km in all. The last two retreat lines, 2016 and 2021, are based on Copernicus Sentinel-1 satellite data, and the very early years, before the advent of the satellite era, are based on aerial observations.

It's no surprise that when a massive lump of ice drops off the edge of a glacier into the sea, the surface waters of the ocean get pretty churned up. However, in addition to causing tsunamis at the surface of the ocean, recent research has led to the discovery that glacier calving can excite vigorous internal tsunami waves - a process that has been neglected in driving ocean mixing in computer models.

A team aboard the British Antarctic Survey's RRS James Clark Ross research ship was taking ocean measurements off the Antarctic Peninsula in January 2020 when the front of the William Glacier disintegrated into a thousand small pieces before their very eyes.

Remarkably, one of Europe's Copernicus Sentinel-1 satellites passed overhead while the ship was close to the Peninsula and captured a radar image.

The image below combines two Sentinel-1 images: one from 8 January 2020 and one from 20 January 2020 when the ship was in the bay, appearing as a red dot. The image captures the William Glacier and Borgen Bay, but more importantly the red colours depict where the sea and ice surfaces changed between the two dates, while white indicates no change.

The amount of red clearly indicates the dynamic nature of the region, and the crevices and fractures on the edge of the glacier front are clear to see.

As well as witnessing the iceberg calving and the resulting waves on the ocean surface, the team on the ship recorded 'internal' underwater tsunami waves as tall as a house. This phenomenon that has been missed in the understanding of ocean mixing and in computer models.

Internal tsunami waves are an important factor in ocean mixing, which affects marine life, temperatures at different depths, and how much ice the ocean can melt.

Ice in Antarctica flows to the coast along glacier-filled valleys. While some ice melts into the ocean, a lot breaks off into icebergs, which range from small chunks up to slabs the size of a country.

The William Glacier typically has one or two large calving events a year. With the front of the glacier towering 40 m above sea level, the team estimated that this event broke off around 78,000 square metres of ice - around the area of 10 football pitches.

Before the glacier front disintegrated, the ocean water at the depth of 50-100 m was cool but there was a warmer layer beneath this. After the calving, this changed dramatically, with the temperature much more even across different depths.

Over the following months, scientists set about analysing the data, which culminated in their research being published recently in Science Advances.

Michael Meredith, lead author and head of the Polar Oceans team at the British Antarctic Survey, said, "This was remarkable to see, and we were lucky to be in the right place at the right time.

"Lots of glaciers end in the sea, and their fronts regularly split off into icebergs. This can cause big surface waves, but we know now that it also creates waves inside the ocean. These internal waves cause the sea to mix, and this affects life in the sea, how warm it is at different depths and how much ice it can melt.

"Ocean mixing influences where nutrients are in the water and this matters for ecosystems and biodiversity.

"We thought we knew what caused this mixing - in summer, we thought it was mainly down to winds and tides, but it never occurred to us that iceberg calving could cause internal tsunamis that would mix things up so substantially."

As opposed to the waves caused by wind and tides, tsunamis are caused by geophysical events where water is suddenly shifted, for example by an earthquake or landslide. Internal tsunamis have been noticed in a handful of places, caused by landslides.

Until now, no one had noticed that they are happening around Antarctica, probably all the time because of the thousands of calving glaciers there. Other places with glaciers are also likely to be affected, including Greenland and elsewhere in the Arctic.

This chance observation and understanding is important since glaciers are set to retreat and calve more as climate change continues. This could likely increase the number of internal tsunamis and the mixing they cause.

This process is not factored into current computer models enabling the team to predict what might happen around Antarctica. This discovery changes our understanding of how the ocean around Antarctica is mixed and will improve knowledge about what this means for our climate, the ecosystem and sea-level rise.

Prof. Meredith concludes, "Our fortuitous timing shows how much more we need to learn about these remote environments and how they matter for our planet."

Glaciers around the world are generally retreating - a serious consequence of climate change. The image below shows how the William Glacier has retreated since 1955, roughly 3 km in all. The last two retreat lines, 2016 and 2021, are based on Copernicus Sentinel-1 satellite data, and the very early years, before the advent of the satellite era, are based on aerial observations.

Research Report:Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica


Related Links
Sentinel-1 at ESA
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Tibetan bottom ice might be younger than previously believed by two orders of magnitude
Shanghai, China (SPX) Nov 23, 2022
From September to October of 2015, a 60-person team were gathering on the Guliya ice cap in the Kunlun Mountains of the Tibetan Plateau, with the purpose to retrieve the world's oldest ice. In a FEATURES article published in Science (29/01/2016) entitled "Tibet's Primeval Ice: the quest for the world's oldest ice could yield a Rosetta Stone for how Asia responds to a changing climate", it was written that "in faint layers of dust and gas bubbles and subtle variations in chemicals within the ice, the gli ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Plant on China's Shenzhou-15 spaceship begins growing

At NASA, France's Macron and US vow strong space cooperation

SpaceX resupply cargo capsule docks with International Space Station

Japan space agency says research team tampered with ISS experiment

ICE WORLD
Arianespace supporting the European Union's Copernicus program with Vega C

Arianespace Ariane 6 to launch Intelsat satellites

SpaceX again postpones Japanese moon lander launch

China successfully reignites rocket engine

ICE WORLD
Second Time's the Charm: Sols 3671-3673

3-D Radargram brings new focus to Mars' north polar cap

NASA awards contract for Mars Sample Return systems

A picture is worth a thousand words

ICE WORLD
China latest astronaut crew docks at the Tiangong Space Station

China launches 3 astronauts to Tiangong space station

China to provide training for foreign astronauts

China to launch Shenzhou XV on Tuesday

ICE WORLD
SiriusXM commissions Maxar to build two satellites

IAU CPS Statement on BlueWalker 3

Commercialisation of space boosted at ESA Ministerial Council

European space sector commits: Earth is ours, we must cherish it

ICE WORLD
Terran Orbital assists demonstration of 1.4 Terabyte Single-Pass Optical Downlink for Pathfinder TD3 Satellite

Lockheed Martin and Sintavia team up to advance metal additive manufacturing

AWS successfully runs AWS compute and machine learning services on an orbiting satellite

Kayhan Space awarded grant to develop autonomous collision avoidance capabilities in space

ICE WORLD
An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

NASA's Webb reveals an exoplanet atmosphere as never seen before

Glass-like shells of diatoms help turn light into energy in dim conditions

ICE WORLD
NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.