. 24/7 Space News .
Tibetan bottom ice might be younger than previously believed by two orders of magnitude
by Staff Writers
Shanghai, China (SPX) Nov 23, 2022

stock image only

From September to October of 2015, a 60-person team were gathering on the Guliya ice cap in the Kunlun Mountains of the Tibetan Plateau, with the purpose to retrieve the world's oldest ice. In a FEATURES article published in Science (29/01/2016) entitled "Tibet's Primeval Ice: the quest for the world's oldest ice could yield a Rosetta Stone for how Asia responds to a changing climate", it was written that "in faint layers of dust and gas bubbles and subtle variations in chemicals within the ice, the glistening cylinder holds part of a record of ancient climate on the Tibetan Plateau that could stretch back nearly a million years".

In fact, this is not the first try for retrieving ice cores from the Guliya ice cap. In 1992, a Guliya ice core to bedrock (308.6 m in length) was recovered at an elevation of 6 200 m above sea level. The 1992 Guliya core was featured on the cover of Science published on 6/20/1997 for its extraordinary long-time scale with the following introduction: "......The Guliya ice core to bedrock contains a regional climate history for the entire last glacial cycle, and the basal ice may exceed 500 000 years in age".

The dating results have made the 1992 Guliya core the oldest non-polar core. In comparison, the Vostok ice core (3 623 m in length) from the central East Antarctica yielded a climate history of past 420 000 years, and the EPICA Dome C ice core (3 260 m in length) also from the central East Antarctica yielded so far the longest ice core record of 800 000 years.

The Guliya ice core temperature record has been extensively used as a paleoclimatic reference since its publication in 1997. However, its chronology was recently challenged by several independent studies. Cheng et al. argued that the chronology of the upper 266 m of the Guliya ice core needed to be compressed by half in order to reconcile the stable isotopic profiles of the Guliya ice core and the Kesang stalagmite records.

In a recent paper published in 2022, Wang et al. further suggested that the Guliya ice core may have a basal age of ~70 000 years in order to reconcile the stable isotopic variations between speleothem and Tibetan ice cores. The radiometric 81Kr dating of several ice samples collected from the edge of the Guliya ice cap yielded upper limits for the age of Guliya ice in the range of 15 000-74 000 years. It's apparent that these dating results were one order of magnitude younger than the original bottom age estimates of the Guliya ice core.

Furthermore, Hou et al. compared the stable isotopic profiles of the Guliya and its nearby Chongce ice cores based on their relative depth, and found significant positive correlation between the two records, implying a similar timescale for both ice cores. Located only ~30 km away from the Guliya ice core site, the Chongce ice cores had the estimated bottom age of 9 000 and 8 300 years for the 135.8 m and the 216.6 m cores respectively.

Moreover, the first optically stimulated luminescence (OSL) dating of the basal sediment collected from the bottom segment of the Chongce 216.6 m ice core resulted in an age estimation of 42 000 years, providing an upper limit for the age of the Chongce ice cores.

Given the close proximity between the Chongce and Guliya ice core drilling sites and the remarkable similarity between their stable isotopic profiles, the Holocene origin of the Chongce ice cores casts significant doubt on the exceptional length of the Guliya ice core record. Moreover, all the other Tibetan ice cores, including the Dunde and Shulenanshan in the Qilian mountains, Zangser Kangri and Puruogangri in the central Tibetan Plateau, and Dasuopu and East Rongbuk in the Himalayas, were also suggested to be of Holocene origin.

Dating alpine ice cores is always a challenging task. Usually, layer counting based on seasonal signals in the physical and chemical properties of the ice core is only reliable for the upper part of the core due to rapid thinning of ice layers in deeper sections. For the deeper (older) part of the ice cores, absolute dating methods, usually based on the decay of radioactive elements preserved in the ice cores, are needed to establish the core chronology. Therefore, the new Guliya ice cores drilled in 2015 provide a valuable opportunity to directly verify the chronology of the 1992 Guliya ice core, particularly with the help of modern dating techniques such as 14C, 36Cl, 40Ar and 81Kr.

Such an effort is extremely necessary and urgent not only for establishing accurate chronologies of Tibetan ice cores, but also for developing reliable reconstructions of past climate and testing important climate concepts and hypotheses, such as asynchronous glaciation and Holocene temperature conundrum on the Tibetan Plateau.

Research Report:On the chronology of Tibetan ice cores

Related Links
School of Oceanography, Shanghai Jiao Tong University, China
Beyond the Ice Age

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Desert dust collected from glacier ice helps document climate change
Columbus OH (SPX) Nov 15, 2022
Researchers from The Ohio State University are using dust trapped in glacier ice in Tibet to document past changes in Earth's intricate climate system - and maybe one day help predict future changes. Their findings suggest that the dust composition in samples collected from different areas and depths of the same glacier can vary greatly, a discovery that hints that a complete dust record could offer up more secrets than scientists realize. Dust stirred up by strong winds can cause a host of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Who will become history's first 'parastronaut'?

Preparing For Space Travel

With new supplies, space station astronauts to research mending broken bones

AFRL awards contract for pioneering spacecraft in region of Moon

SpaceX Dragon supply ship launch scrubbed by bad weather

France, Germany, Italy agree on next-generation space rockets

Rocket Lab completes final launch rehearsal ahead of first Electron Mission from US

LOFTID inflatable heat shield test a success, early results show

An early start to a long weekend - Sols 3660-3664

The first life in our solar system may have been on Mars

Mars was covered by 300 meter deep oceans

Perseverance investigates intriguing Martian bedrock

Xi: China open to space exchanges, cooperation

Shenzhou XIV taikonauts perform third spacewalk

Galactic Energy carries out fourth successful launch

China launches spacecraft carrying cargo for space station

Einstein Industries Ventures joins ESA Investor Network

Satellite broadband firms join forces

AE Industrial Partners completes investment in York Space Systems

SFL contracted for 15 additional HawkEye 360 RF geolocation microsatellites

French-Lebanese architect seeks pro-climate construction transformation

Quandum Aerospace tested Zortrax resin 3D Printing Ecosystem

Scientists demonstrate continuous-wave lasing of deep-ultraviolet laser diode at room temps

'Sail' to de-orbit would-be space junk

Glass-like shells of diatoms help turn light into energy in dim conditions

An exoplanet atmosphere as never seen before

Colliding magnetic fields reveal unknown planets

"Polluted" white dwarfs show that stars and planets grow together

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.