. 24/7 Space News .
STELLAR CHEMISTRY
Galaxies have gotten hotter as they've gotten older
by Staff Writers
Baltimore MD (SPX) Nov 11, 2020

As the universe evolves, matter concentrations are surrounded by gas halos getting hotter and bigger.

Who says you can't get hotter with age? Researchers from Johns Hopkins University and other institutions have found that, on average, the temperature of galaxy clusters today is 4 million degrees Fahrenheit. That is 10 times hotter than 10 billion years ago, and four times hotter than the Sun's outermost atmosphere called the corona. The findings are published in the Astrophysical Journal.

"We have measured temperatures throughout the history of the universe," said Brice Menard, a Johns Hopkins professor of physics and astronomy. "As time has gone on, all those clusters of galaxies are getting hotter and hotter because their gravity pulls more and more gas toward them."

Yi-Kuan Chiang, lead author of the study who was a Johns Hopkins post-doctoral researcher until moving to Ohio State University last year, added: "This drag is so violent that more and more gas is shocked and heated up."

Imagine all those gas atoms being sucked towards galaxies like they were myriads of meteoroids piercing Earth's atmosphere, Menard said. They accelerate as gravity pulls them toward the Earth's surface and heat up due to friction with the atmosphere before burning into what are seen as shooting stars, he added.

This pattern of heating due to gravitational forces can be applied to entire galaxies, clusters of galaxies and beyond into the "large scale structures" of the universe formed by gravity - a theory attributed to James Peebles, the 2019 Nobel laureate in physics.

"Our measurements are a great confirmation of that theory," Menard said.

To perform this analysis, the team used data collected by the astronomical community over two decades, first from a telescope on the ground that conducted the Sloan Digital Sky Survey and then the Planck mission, a space telescope led by the European Space Agency.

The team used a technique that Menard developed with Chiang. With it, they estimated the "redshift" of gas concentrations seen in images of microwave light going back in time all the way to 10 billion years ago. "Redshift" describes the way wavelengths of light lengthen due to the expansion of the universe. The farther away something is, the longer its wavelength - and the older its origin.

The method allowed them to measure the gradual increase in the gas temperature as a function of the age of the universe. This trend is also predicted by numerical simulations showing how dark matter and the atoms present in the gas evolve with time. As illustrated in the figure, these visualizations show gas temperatures changing from a cool blue canvas from 10 billion years ago into one speckled with hot red today.

The warming of the universe has nothing to do with climate warming on Earth, Menard said. It is a consequence of gravitational attraction that had been predicted but which now can be precisely measured with these novel techniques.

Research paper


Related Links
Johns Hopkins University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Exploring the source of stars and planets in a laboratory
Plainsboro NJ (SPX) Oct 27, 2020
A new method for verifying a widely held but unproven theoretical explanation of the formation of stars and planets has been proposed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The method grows from simulation of the Princeton Magnetorotational Instability (MRI) Experiment, a unique laboratory device that aims to demonstrate the MRI process that is believed to have filled the cosmos with celestial bodies. The novel device, designed to duplic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
New NASA Partnerships to Mature Commercial Space Technologies, Capabilities

Chinese vision of 'community of shared future for mankind' included in UN outer space resolution again

Air leaking crack in ISS Russian module might get repaired in December

Astronauts prepare for most crowded space station in years

STELLAR CHEMISTRY
NASA's SpaceX Crew-1 Astronauts Touch Down at Florida Spaceport

Astronauts arrive in Florida for historic launch Saturday

Long March 6 deploys 10 Argentine satellites

PSLV launches EOS-01 and nine customer satellites from Sriharikota

STELLAR CHEMISTRY
Review board says NASA, ESA ready to pursue Mars sample return mission

Clay subsoil at Earth's driest place may signal life on Mars

Water on ancient Mars

Geologists simulate soil conditions to help grow plants on Mars

STELLAR CHEMISTRY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

STELLAR CHEMISTRY
Successful launch of Kleos Space Scouting Mission satellites into 37 degree Inclined Orbit

Lacuna Space continues to grow IoT constellation with an equatorial satellite

Lift-off for new generation of space scientists

Marking five years of Hungary in ESA

STELLAR CHEMISTRY
Optimizing the design of new materials

Exceptional ground and flight demonstrations lead way to further applicability across programs

Monitoring open-cast mines better than before

3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

STELLAR CHEMISTRY
Maunakea telescopes confirm first brown dwarf discovered by radio observations

Water may be naturally occurring on all rocky planets

NYUAD study finds stellar flares can lead to the diminishment of a planet's habitability

Stars and planets grow up together as siblings

STELLAR CHEMISTRY
Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto

Where were Jupiter and Saturn born?

NASA's Webb To Examine Objects in the Graveyard of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.