. 24/7 Space News .
STELLAR CHEMISTRY
Exploring the source of stars and planets in a laboratory
by Staff Writers
Plainsboro NJ (SPX) Oct 27, 2020

Physicist Himawan Winarto with figures from paper behind him.

A new method for verifying a widely held but unproven theoretical explanation of the formation of stars and planets has been proposed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The method grows from simulation of the Princeton Magnetorotational Instability (MRI) Experiment, a unique laboratory device that aims to demonstrate the MRI process that is believed to have filled the cosmos with celestial bodies.

The novel device, designed to duplicate the process that causes swirling clouds of cosmic dust and plasma to collapse into stars and planets, consists of two fluid-filled concentric cylinders that rotate at different speeds. The device seeks to replicate the instabilities that are thought to cause the swirling clouds to gradually shed what is called their angular momentum and collapse into the growing bodies that they orbit. Such momentum keeps the Earth and other planets firmly within their orbits.

"In our simulations we can actually see the MRI develop in experiments," said Himawan Winarto, a graduate student in the Princeton Program in Plasma Physics at PPPL and lead author of a paper in Physical Review E interest in the subject began as an intern in the University of Tokyo-Princeton University Partnership on Plasma Physics while an undergraduate at Princeton University.

The suggested system would measure the strength of the radial, or circular, magnetic field that the rotating inner cylinder generates in experiments. Since the strength of the field correlates strongly with expected turbulent instabilities, the measurements could help pinpoint the source of the turbulence.

"Our overall objective is to show the world that we've unambiguously seen the MRI effect in the lab," said physicist Erik Gilson, one of Himawan's mentors on the project and a coauthor of the paper. "What Himawan is proposing is a new way to look at our measurements to get at the essence of MRI."

Surprising results
The simulations have shown some surprising results. While MRI is normally observable only at a sufficiently high rate of cylinder rotation, the new findings indicate that instabilities can likely be seen well before the upper limit of the experimental rotation rate is reached. "That means speeds much closer to the rates we are running now," Winarto said, "and projects to the rotational speed that we should aim for to see MRI."

A key challenge to spotting the source of MRI is the existence of other effects that can act like MRI but are not in fact the process. Prominent among these deceptive effects are what are called Rayleigh instabilities that break up fluids into smaller packets, and Ekman circulation that alters the profile of fluid flow. The new simulations clearly indicate "that MRI, rather than Ekman circulation or Rayleigh instability, dominates the fluid behavior in the region where MRI is expected," Winarto said.

The findings thus shed new light on the growth of stars and planets that populate the universe. "Simulations are very useful to point you in the right direction to help interpret some of the diagnostic results of experiments," Gilson said. "What we see from these results is that the signals for MRI look like they should be able to be seen more easily in experiments than we had previously thought."

Research paper


Related Links
Princeton Plasma Physics Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Galactic archaeology
Austin TX (SPX) Oct 23, 2020
No one has yet found the first stars. They're hypothesized to have formed about 100 million years after the Big Bang out of universal darkness from the primordial gases of hydrogen, helium, and trace light metals. These gases cooled, collapsed, and ignited into stars up to 1,000 times more massive than our sun. The bigger the star, the faster they burn out. The first stars probably only lived a few million years, a drop in the bucket of the age of the universe, at about 13.8 billion years. They're unlik ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA, Department of Energy expand on more than 50 years of collaboration

NSF and CASIS select five transport phenomena projects for flight to ISS

Cygnus delivers slew of research programs to Space Station

NASA to commercialize Near-Earth communications services

STELLAR CHEMISTRY
Defense Dept taps Texas A and M system to lead US consortium for hypersonic systems

UB awarded $8.5 million to improve 'hybrid' space rockets

ABL Space Systems performs integrated stage test of the RS1 launch vehicle

The Propulsion We're Supplying, It's Electrifying

STELLAR CHEMISTRY
Geologists simulate soil conditions to help grow plants on Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

Leonardo at work on robotic arms for the NASA and ESA Mars Sample Return mission

Perseverance rover bringing 3D-printed metal parts to Mars

STELLAR CHEMISTRY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

STELLAR CHEMISTRY
SpaceX launches public beta test of Starlink Internet service

Budding space entrepreneurs wow industry experts

ESA Masterclass full series: Leadership at Mission Control

SpaceX launches cluster of Starlink satellites

STELLAR CHEMISTRY
D-Orbit secures 15M euro financing from EIB

Rad-Hardened motor controller consolidates essential functions into a single chip

NorthStar building world's first satellite constellation to combat imminent threat of space collisions

Time crystals lead researchers to future computational work

STELLAR CHEMISTRY
Microbial diversity below seafloor is as rich as on Earth's surface

Data reveals evidence of molecular absorption in the atmosphere of a hot Neptune

AI and photonics join forces to make it easier to find 'new Earths'

Smile, wave: Some exoplanets may be able to see us, too

STELLAR CHEMISTRY
Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.