. 24/7 Space News .
GESTRA space radar ready to begin operations
by Staff Writers
Bonn, Germany (SPX) Oct 14, 2020

The German Experimental Space Surveillance and Tracking Radar (GESTRA) system is one of the most modern radar systems for detecting objects in space. This unique system can monitor space debris and active space systems in low-Earth orbits around the clock. Video: Improved Safety in Space: The GESTRA radar system

Activity in space continues to increase. Several thousand satellites, spacecraft and other objects orbit Earth at altitudes of between 300 and 3000 kilometres. In addition to the inactive satellites and upper stages of rockets that are left behind here after missions, there are hundreds of thousands of smaller pieces of debris.

Satellites and other space infrastructure such as the International Space Station (ISS) need to be continuously monitored to avoid collisions. Active objects can engage in evasive manoevres, while inactive space debris such as disfunctional satellite parts, or the remains of rockets, pose a threat.

The German Experimental Space Surveillance and Tracking Radar (GESTRA) system can monitor objects in low-Earth orbit around the clock. The complex radar system is unique in its design. Consisting of transmit and receive systems that are housed in two separate containers, it can be transported to different locations. The antenna consists of 256 individual, electronically controlled transmit/receive modules.

On 13 October 2020, GESTRA was inaugurated at its operating location on the premises of the German Bundeswehr at Schmidtenhohe near Koblenz. "From here, the experimental radar will make a decisive contribution to securing our satellites in low-Earth orbit," says Walther Pelzer, German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) Executive Board Member and Head of the DLR Space Administration.

"GESTRA consists of transmitter and a receiver units, both of which are installed here. With these, we can detect objects in low-Earth orbit and measure their orbital parameters. From here, the measurement data are sent to the German Space Situational Awareness Centre (GSSAC) in Uedem.

A comprehensive catalogue will be produced there that will inform us about the situation in space and any possible dangers. When GESTRA enters operation, most likely at the beginning of 2021 following the completion of all the necessary testing, Germany will begin receiving independent data for the creation of its own catalogue of objects in low-Earth orbit for the first time."

GESTRA is Germany's first space radar system. It was developed and constructed over five years by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR) in Wachtberg, near Bonn, on behalf of the DLR Space Administration and with funding from the Federal Ministry for Economic Affairs and Energy (BMWi).

In recent months, GESTRA was installed at its operating location at Schmidtenhohe near Koblenz. The data from the German experimental radar are processed at GSSAC in Uedem, which is jointly operated by the DLR Space Administration and the German Air Force, Lower Rhine. Last year, on 27 November 2019, GESTRA received its first signals from objects in Earth orbit during tests at FHR in Wachtberg. Operation of GESTRA is financed by the German Federal Ministry of Defence (BMVg).

"Satellites have long been indispensable for governments, the economy and society, with the key words being navigation and communications services and Earth observation data," says Thomas Jarzombek, a Member of the German Federal Parliament and Federal Government Coordinator of German Aerospace Policy. "We are currently experiencing an almost exponential growth in the use of space. According to the latest figures, more than 3000 active satellites are currently orbiting Earth. In the future this number will increase significantly."

As a result, space situational awareness is becoming increasingly important for the protection and sustainability of space activities. "We need to know exactly where the satellites and tens of thousands of space debris objects are, at any given time, in order to prevent catastrophic collisions," adds Jarzombek.

At the European level, GESTRA is also involved in the European Space Surveillance and Tracking (EUSST) project. Here, Germany has the task of processing the measurement data from the sensors that contribute towards EUSST to create a European orbit data catalogue. Due to the high velocities involved, a satellite can be completely destroyed by a collision in orbit.

The resulting debris increases the risk of chain reactions and further collisions. In 2009, a severe collision between the American satellite, Iridium 33, and the inactive Russian satellite, Cosmos 2251, generated more than 3000 measurable pieces of space debris. Many of them still pose a threat to satellites today, which are regularly forced to engage in evasive manoeuvres as a result.

Video: Improved Safety in Space: The GESTRA radar system

Related Links
GESTRA - Experimental Space Surveillance Radar
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Ultrasensitive microwave detector developed
Pohang, South Korea (SPX) Oct 05, 2020
A joint international research team from POSTECH of South Korea, Raytheon BBN Technologies, Harvard University, and Massachusetts Institute of Technology in the U.S., Barcelona Institute of Science and Technology in Spain, and the National Institute for Materials Science in Japan have together developed ultrasensitive sensors that can detect microwaves with the highest theoretically possible sensitivity. The research findings, published in the prominent international academic journal Nature on Oct ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Homemade space food for Matthias Maurer

ISS crew fails to resolve air leak issue in Russia's Zvezda Module with adhesive tape

Abort and attitude control motors to support six crewed Artemis missions

NASA advances plan to commercialize International Space Station

Blue Origin launches, lands NASA moon landing sensor experiment

ISRO's human space flight rocket to have multiple backups for crucial systems

NASA, SpaceX Crew-1 Launch Update

Accion Systems to demonstrate its propulsion system in NanoAvionics US rideshare mission

NASA's Perseverance Rover Will Peer Beneath Mars' Surface

China's Mars probe completes deep-space maneuver

NASA, JAXA to Send Sampling Technology to Moon and Phobos

Mars at its biggest and brightest until 2035

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

Iridium says consumers staying connected when off-the-Grid during COVID-19 pandemic

Space agency leaders call for greater international cooperation

RBC Signals to Host Swarm Antennas Supporting Global Connectivity Constellation

Startups eye rocket and satellite markets

Kongsberg awarded contract for mobile communication satellite

On the trail of causes of radiation events during space flight

Ultrasensitive microwave detector developed

NASA, space industry seek new ways to cope with space debris

Vaporized metal in the air of an exoplanet

Massive stars are factories for ingredients to life

New research explores how super flares affect planets' habitability

Some planets may be better for life than Earth

Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.