. 24/7 Space News .
WATER WORLD
'Fog harp' increases collection capacity for clean water
by Staff Writers
Blacksburg VA (SPX) Apr 03, 2018

Study co-author Josh Tulkoff constructs a large prototype of the fog harp, which consists of a vertical array of 700 wires and is based on initial experimental results. Tulkoff was partof an interdisciplinary research team at Virginia Tech that discovered parallel wire arrays could increase the water collection capacity of fog nets by threefold.

Fog harvesting may look like whimsical work. After all, installing giant nets along hillsides and mountaintops to catch water out of thin air sounds more like folly than science. However, the practice has become an important avenue to clean water for many who live in arid and semi-arid climates around the world.

A passive, durable, and effective method of water collection, fog harvesting consists of catching the microscopic droplets of water suspended in the wind that make up fog. Fog harvesting is possible - and has gained traction over the last several decades - in areas of Africa, South America, Asia, the Middle East, and even California. As illustrated by recent 'Fog harp' increases collection capacity for clean waters of South Africa's countdown to "Day Zero," or the day the water taps are expected to run dry, water scarcity continues to be a growing problem across the globe. Leading researchers now estimate that two-thirds of the world's population already live under conditions of severe water scarcity at least one month of the year.

Fog harvesting could help alleviate that shortage, and now an interdisciplinary research team at Virginia Tech has improved the traditional design of fog nets to increase their collection capacity by threefold.

Published in ACS Applied Materials and Interfaces and partially funded by the Virginia Tech Institute for Creativity, Arts, and Technology, the team's research demonstrates how a vertical array of parallel wires may change the forecast for fog harvesters. In a design the researchers have dubbed the "fog harp," these vertical wires shed tiny water droplets faster and more efficiently than the traditional mesh netting used in fog nets.

"From a design point of view, I've always found it somewhat magical that you can essentially use something that looks like screen door mesh to translate fog into drinking water," said Brook Kennedy, associate professor of industrial design in the College of Architecture and Urban Studies and one of the study's co-authors. "But these parallel wire arrays are really the fog harp's special ingredient."

Fog nets have been in use since the 1980s and can yield clean water in any area that experiences frequent, moving fog. As wind moves the fog's microscopic water droplets through the nets, some get caught on the net's suspended wires. These droplets gather and merge until they have enough weight to travel down the nets and settle into collection troughs below. In some of the largest fog harvesting projects, these nets collect an average of 6,000 liters of water each day.

However, the traditional mesh design of fog nets has long posed a dual constraint problem for scientists and engineers. If the holes in the mesh are too large, water droplets pass through without catching on the net's wires. If the mesh is too fine, the nets catch more water, but the water droplets clog up the mesh without running down into the trough and wind no longer moves through the nets.

Thus, fog nets aim for a middle ground, a Goldilocks zone of fog harvesting: mesh that's not too big and not too small. This compromise means nets can avoid clogging, but they're not catching as much water as they could be.

"It's an efficiency problem and the motivation for our research," said Jonathan Boreyko, assistant professor in the Department of Biomedical Engineering and Mechanics in the College of Engineering. As a co-author of the study, Boreyko consulted on the theory and physical aspects of the fog harp's design.

"That hidden regime of making the wires smaller but not clogging is what we were trying to accomplish. It would be the best of both worlds," he said.

Since the water droplets caught in a fog net move downward with gravity, Boreyko hypothesized that removing the horizontal wires of the net would alleviate some of the clogging. Meanwhile, Kennedy, who specializes in biomimetic design, found his inspiration for the fog harp in nature.

"On average, coastal redwoods rely on fog drip for about one-third of their water intake," said Kennedy. "These sequoia trees that live along the California coast have evolved over long periods of time to take advantage of that foggy climate. Their needles, like those of a traditional pine tree, are organized in a type of linear array. You don't see cross meshes."

Mark Anderson, a study co-author and then-undergraduate student in the Department of Mechanical Engineering, built several scale models of the fog harp with varying sizes of wires. Weiwei Shi, a doctoral student in the engineering mechanics doctoral program as well as the study's lead author, tested the small prototypes in an environmental chamber and developed a theoretical model of the experiment.

"We found that the smaller the wires, the more efficient the water collection was," said Boreyko. "These vertical arrays kept catching more and more fog, but the clogging never happened."

The team has already constructed a larger prototype of the fog harp - a vertical array of 700 wires that measures 3 feet by 3 feet - in an effort led by Josh Tulkoff, study co-author and a then-undergraduate student in the industrial design program. They plan to test the prototype on nearby Kentland Farm.

Through its unique combination of science and design, the researchers hope the fog harp will one day make a big impact where it's needed most - in the bottom of the water bucket.

Research paper


Related Links
Virginia Tech
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Artificial bio-inspired membranes for water filtration
Paris, France (SPX) Mar 27, 2018
From a desire to develop breakthrough technologies for water filtration and purification, researchers have developed membranes with artificial channels inspired by the proteins that form the pores in biological membranes: aquaporins. Using an innovative spectroscopic technique, they have been able to observe that, in the very restricted space in these channels, water molecules organize in a very regular manner, in an oriented molecular wire structure : the water has become "chiral." Identify ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
A bridge so far: China's controversial megaproject

Coming down in flames: Fiery endings for spacecraft

Inspired by ASU NASA mission, students create space art

Airbus delivers new life support system for the ISS

WATER WORLD
Chinese scientists developing bee-inspired aerospace vehicle

3D printing rocket engines in SPAIN

Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

WATER WORLD
Sol 2000: Roving for 2000 Martian Days

Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

Instruments for next NASA mission to Mars being tested under Germany's Black Forest

WATER WORLD
China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

WATER WORLD
Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

WATER WORLD
Microsoft shakes up ranks to shoot for the cloud

Oracle's big-money case against Google gets new life

Finding order in disorder demonstrates a new state of matter

Pressing a button is more challenging than appears

WATER WORLD
Earth's stable temperature past suggests other planets could also sustain life

Characterization of a water world in a multi-exoplanetary system

Hot, metallic Mercury-like exoplanet discovered 340 light-years from Earth

New study shows what interstellar visitor Oumuamua can teach us

WATER WORLD
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.