. 24/7 Space News .
AEROSPACE
First flight for aeroelastic wings at Oberpfaffenhofen special-purpose airport
by Staff Writers
Oberpfaffenhofen , Germany (DLR) Nov 21, 2019

Novel wing designs can make aircraft lighter

In a collaboration between the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) and the Technical University of Munich (TUM), researchers have succeeded in developing new technologies for lighter yet extremely stable wings. With the help of these innovative wing designs, flying could soon become both more environmentally friendly and less expensive. The aeroelastic wings made their first flight on 19 November at Oberpfaffenhofen airport.

Wings with longer spans and lower weight generate less drag - and are therefore more energy efficient. More efficient lift could reduce kerosene consumption and thus reduce emissions and costs. The limiting factor for the construction of such wings is the aerodynamic phenomenon of flutter.

Wing oscillations become stronger and stronger due to drag and wind gusts - much like a flag flying in a strong wind. "Flutter causes material fatigue and can even lead to the failure of the wing attachment to the fuselage," explains Sebastian Koberle, a researcher at the TUM Institute of Aircraft Design.

Although any wing will begin to flutter at sufficiently high speed, shorter and thicker wings have greater structural stiffness, and hence greater stability. Building wings with longer spans that are just as stable and stiff would make them much heavier. In the European Flutter Free FLight Envelope eXpansion for ecOnomical Performance improvement (FLEXOP) project, researchers from six countries are working on new technologies to control flutter while allowing wings to be made lighter.

Wings avoid wind
The TUM researchers are responsible for the design and execution of the flight tests that demonstrate the actual behaviour of the two novel wings developed by the project - the aeroelastic wing and the flutter wing. The TUM team first built the three-and-a-half-metre-long and seven-metre-wide flight demonstrator and integrated the various systems provided by the European partners. A particularly light wing, which has now been flown for the first time, is an aeroelastically optimised wing constructed from carbon-fibre reinforced composites.

It was developed by DLR in Gottingen, in collaboration with Delft University of Technology. The researchers were able to influence its bending and torsional behaviour through a special alignment of the fibres during the construction of the wing. "When the wing is bent by aerodynamic forces, it rotates simultaneously and thereby reduces airflow-induced loads," says Wolf-Reiner Kruger of the DLR Institute of Aeroelasticity in Gottingen.

With the help of the reference wings, the TUM researchers worked in advance to have the flight demonstrator automatically fly predefined flight test patterns. They devised optimum settings and developed manuals and checklists for the flight tests. "The flight demonstrator has to fly fast enough with the new wings that they would theoretically have to flutter," explains Koberle. "We have to be sure that nothing goes wrong at such high speeds."

"The aircraft must remain visible from the ground, so that the researchers can intervene at any time. This means that the flight manoeuvres are flown within one kilometre of the ground control station. The extensive test flights followed completion of complex preliminary work. "Everything worked out as we imagined it would," says Koberle. "Now we will begin evaluating the data."

Active damper control for the 'flutter wing'
Another super-efficient wing developed in the project is the 'flutter wing'. This is a TUM design and is made of fibreglass. If fluttering occurs, the outermost flaps are extended. They act like dampers. "The active flap control developed at DLR considerably increases the possibilities for a much lighter design," says Gertjan Looye of the DLR Institute of System Dynamics and Control in Oberpfaffenhofen, which manages DLR's share of the project.

A second flight control system is being developed by the Computer and Automation Research Institute of the Hungarian Academy of Sciences (MTA SZTAKI). Project Manager Balint Vanek of MTA SZTAKI adds: "Such a wing would make it possible to transport 20 percent more cargo or to reduce the required fuel by seven percent." The technology is particularly complex, so tests on this wing will take place at a later date.


Related Links
EU FLEXOP project
Aerospace News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


AEROSPACE
FSU researchers develop thin heat shield for superfast aircraft
Tallahassee FL (SPX) Nov 18, 2019
The world of aerospace increasingly relies on carbon fiber reinforced polymer composites to build the structures of satellites, rockets and jet aircraft. But the life of those materials is limited by how they handle heat. A team of FAMU-FSU College of Engineering researchers from Florida State University's High-Performance Materials Institute is developing a design for a heat shield that better protects those extremely fast machines. Their work will be published in the November edition of CA ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
UAE's first astronaut urges climate protection on Earth

Final spacewalk preps during biology, physics studies on ISS

Scarier than fiction: climate worry driving 'cli-fi' boom

Commerce leaders introduce the NASA Authorization Act of 2019

AEROSPACE
SpaceX Completes Crew Dragon Static Fire Tests

Not your average rocket launch; 45th SW supports Pegasus ICON

ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

All four engines are attached to the SLS Core Stage for Artemis I

AEROSPACE
China completes Mars lander test ahead of 2020 mission

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

ESA's Mars orbiters did not see latest Curiosity methane burst

With Mars methane mystery unsolved, Curiosity serves scientists a new one: oxygen

AEROSPACE
China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

AEROSPACE
Space Talks 2019: bringing space to you

EU must boost spending in space or be squeezed out: experts

SpaceX faces competitors in race to build Internet-satellite constellation

SpaceX launches Starlink satellites with first reused rocket nose

AEROSPACE
A four-way switch promises greater tunability of layered materials

Artificial intelligence to run the chemical factories of the future

Research reveals new state of matter with a Cooper pair metal

Top US court to hear key Google-Oracle software case

AEROSPACE
Distant worlds under many suns

Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

AEROSPACE
New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'

NASA renames faraway ice world 'Arrokoth' after backlash

Juice cast in gold

SwRI to plan Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.