![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Oberpfaffenhofen , Germany (DLR) Nov 21, 2019
In a collaboration between the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) and the Technical University of Munich (TUM), researchers have succeeded in developing new technologies for lighter yet extremely stable wings. With the help of these innovative wing designs, flying could soon become both more environmentally friendly and less expensive. The aeroelastic wings made their first flight on 19 November at Oberpfaffenhofen airport. Wings with longer spans and lower weight generate less drag - and are therefore more energy efficient. More efficient lift could reduce kerosene consumption and thus reduce emissions and costs. The limiting factor for the construction of such wings is the aerodynamic phenomenon of flutter. Wing oscillations become stronger and stronger due to drag and wind gusts - much like a flag flying in a strong wind. "Flutter causes material fatigue and can even lead to the failure of the wing attachment to the fuselage," explains Sebastian Koberle, a researcher at the TUM Institute of Aircraft Design. Although any wing will begin to flutter at sufficiently high speed, shorter and thicker wings have greater structural stiffness, and hence greater stability. Building wings with longer spans that are just as stable and stiff would make them much heavier. In the European Flutter Free FLight Envelope eXpansion for ecOnomical Performance improvement (FLEXOP) project, researchers from six countries are working on new technologies to control flutter while allowing wings to be made lighter.
Wings avoid wind It was developed by DLR in Gottingen, in collaboration with Delft University of Technology. The researchers were able to influence its bending and torsional behaviour through a special alignment of the fibres during the construction of the wing. "When the wing is bent by aerodynamic forces, it rotates simultaneously and thereby reduces airflow-induced loads," says Wolf-Reiner Kruger of the DLR Institute of Aeroelasticity in Gottingen. With the help of the reference wings, the TUM researchers worked in advance to have the flight demonstrator automatically fly predefined flight test patterns. They devised optimum settings and developed manuals and checklists for the flight tests. "The flight demonstrator has to fly fast enough with the new wings that they would theoretically have to flutter," explains Koberle. "We have to be sure that nothing goes wrong at such high speeds." "The aircraft must remain visible from the ground, so that the researchers can intervene at any time. This means that the flight manoeuvres are flown within one kilometre of the ground control station. The extensive test flights followed completion of complex preliminary work. "Everything worked out as we imagined it would," says Koberle. "Now we will begin evaluating the data."
Active damper control for the 'flutter wing' A second flight control system is being developed by the Computer and Automation Research Institute of the Hungarian Academy of Sciences (MTA SZTAKI). Project Manager Balint Vanek of MTA SZTAKI adds: "Such a wing would make it possible to transport 20 percent more cargo or to reduce the required fuel by seven percent." The technology is particularly complex, so tests on this wing will take place at a later date.
![]() ![]() FSU researchers develop thin heat shield for superfast aircraft Tallahassee FL (SPX) Nov 18, 2019 The world of aerospace increasingly relies on carbon fiber reinforced polymer composites to build the structures of satellites, rockets and jet aircraft. But the life of those materials is limited by how they handle heat. A team of FAMU-FSU College of Engineering researchers from Florida State University's High-Performance Materials Institute is developing a design for a heat shield that better protects those extremely fast machines. Their work will be published in the November edition of CA ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |