. | . |
Evolving landscape added fuel to Gobi Desert's high-speed winds by Staff Writers New York NY (SPX) Jan 13, 2020
On February 28, 2007, harsh winds blew 10 train cars off a track running near China's Hami basin, killing three passengers and seriously injuring two others. Hurricane-force gusts of 75 mph or more scour this basin every 15-20 days or so, on average, and can reach maximum speeds of more than 120 mph. A study published last week in Nature Communications has documented a new feedback loop that may have helped to make this basin in the Gobi Desert one of the windiest places in China. "It's an odd-looking environment because it's covered by these dark-colored gravels," explained lead author Jordan Abell. "It's really hot, and can be extremely windy. Our team wondered if the surface plays any role in these extreme conditions." Abell is a graduate student at Columbia University's Lamont-Doherty Earth Observatory and the Department of Earth and Environmental Sciences. His advisor is Lamont-Doherty geochemist Gisela Winckler, also a co-author on the paper. The Hami basin may once have been covered in a fine, light-colored sediment, similar to California's Death Valley. Within the past 3 million years, however, strong winds carried away those fine sediments, leaving behind a sea of gray and black rocks. Using a weather and forecasting model, Abell and his colleagues studied how this change from light to dark landscape affected wind speeds in the basin. By absorbing more sunlight, the darker stones exposed by wind erosion heated up the air within the depression. The team found that the resulting differences in temperature between the depression and the surrounding mountains increased wind speeds by up to 25 percent. In addition, the amount of time the area experiences high wind speeds increased by 30 to 40 percent. Thus, by changing how much sunlight the ground absorbs, wind erosion appears to have exacerbated wind speeds in this region. It's the first time this positive feedback loop has been described and quantified, said Abell. But it's probably not the only example of its kind. The researchers think this interaction may have helped to shape other stony deserts in Australia, Iran, and perhaps even on Mars. Understanding this relationship between landscape changes, albedo, and wind erosion may help to make climate simulations more accurate for both the past and future. Climate models typically do not account for changes in the reflectance of landscapes other than those caused by ice and vegetation. They also tend to assume arid landscapes remain unchanged over time. That could be problematic in some cases, said Abell. "If you wanted to calculate the wind or atmospheric circulation in this area 100,000 years ago, you would need to consider the change in the surface geology, or else you could be incorrect by 20 or 30 percent," he said. He added that the newly discovered relationship could also help to accurately model how other landscape changes, such as urbanization and desertification, influence atmospheric patterns by changing the reflectance of the earth's surface.
Model offers clearer understanding of factors that influence monsoon behavior Beijing, China (SPX) Dec 13, 2019 Monsoons can have a significant impact on human populations all around the world, bringing heavy rainfall associated with flooding and mudslides that can damage crops and pose a health and safety risk. In countries such as India, monsoons also provide a vital source of water needed for growing crops. Being able to accurately forecast monsoons, as well as predict climate changes that drive these events, is of great benefit to humanity as it can help communities to better prepare and plan, which can ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |