. 24/7 Space News .
Satellite constellations harvest energy for near-total global coverage
by Staff Writers
Ithaca NY (SPX) Jan 13, 2020

stock illustration only

Think of it as a celestial parlor game: What is the minimum number of satellites needed to see every point on Earth? And how might those satellites stay in orbit and maintain continuous 24/7 coverage while contending with Earth's gravity field, its lumpy mass, the pull of the sun and moon, and pressure from solar radiation?

In the mid-1980s, researcher John E. Draim proposed what is generally considered to be the ideal solution: a four-satellite constellation. However, the amount of propellant needed to keep the satellites in place, and the ensuing cost, made the configuration unfeasible.

Now, a National Science Foundation-sponsored collaboration led by Patrick Reed, the Joseph C. Ford Professor of Engineering at Cornell University, has discovered the right combination of factors to make a four-satellite constellation possible, which could drive advances in telecommunication, navigation and remote sensing. And in an ingenious twist, the researchers accomplished this by making the forces that ordinarily degrade satellites instead work in their favor.

"One of the interesting questions we had was, can we actually transform those forces? Instead of degrading the system, can we actually flip it such that the constellation is harvesting energy from those forces and using them to actively control itself?" Reed said.

Their paper, "Low Cost Satellite Constellations for Nearly Continuous Global Coverage," published Jan. 10 in Nature Communications.

The AI-based evolutionary computing search tools that Reed has developed are ideally suited for navigating the numerous complications of satellite placement and management.

For this project, Reed collaborated with researchers from The Aerospace Corporation, combining his algorithmic know-how with the company's expertise in cutting-edge astrophysics, operational logistics and simulations.

In order to sift through the hundreds of thousands of possible orbits and combinations of perturbations, the team used the Blue Waters supercomputer at University of Illinois, Urbana-Champaign. Blue Waters compressed 300 or 400 years' worth of computational exploration into the equivalent of roughly a month of actual computing, Reed said.

They winnowed their constellation designs to two models that could orbit for either a 24- or 48-hour period and achieve continuous coverage over 86% and 95% of the globe, respectively. While 100% performance coverage would be ideal in theory, the researchers found that sacrificing only 5%-14% created greater gains in terms of harvesting energy from the same gravitational and solar radiation forces that would normally make a satellite constellation short lived and difficult to control.

The tradeoff is worth it, Reed said, especially since satellite operators could control where the gaps in coverage would occur. Outages in these low-priority regions would last approximately 80 minutes a day, at most, in the worst-case scenario.

"This is one of those things where the pursuit of perfection actually could stymie the innovation," Reed said. "And you're not really giving up a dramatic amount. There might be missions where you absolutely need coverage of everywhere on Earth, and in those cases, you would just have to use more satellites or networked sensors or hybrid platforms."

Using this type of passive control could potentially extend a constellation's lifespan from five years to 15 years. These satellites would require less propellant and would float at higher elevations, removing them from the risky high-traffic zone of low Earth orbit.

But perhaps the biggest selling point is the low cost. Commercial interests or countries without the financial resources to launch a large constellation of satellites could attain near-continuous global coverage very economically, with reduced long-term technical overhead.

"Even one satellite can cost hundreds of millions or billions of dollars, depending on what sensors are on it and what its purpose is. So having a new platform that you can use across the existing and emerging missions is pretty neat," Reed said. "There's a lot of potential for remote sensing, telecommunication, navigation, high-bandwidth sensing and feedback around the space, and that's evolving very, very quickly. There's likely all sorts of applications that might benefit from a long-lived, self-adapting satellite constellation with near global coverage."

The paper's lead author is Lake Singh with The Aerospace Corporation. Researchers from the University of California, Davis, also contributed.

"We leveraged Aerospace's constellation design expertise with Cornell's leadership in intelligent search analytics and discovered an operationally feasible alternative to the Draim constellation design," said Singh, systems director for The Aerospace Corporation's Future Architectures department. "These constellation designs may provide substantive advantages to mission planners for concepts out at geostationary orbits and beyond."

Research paper

Related Links
Cornell University
The latest information about the Commercial Satellite Industry

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

SpaceX launches third batch of Starlink satellites
Washington (AFP) Jan 6, 2020
SpaceX on Monday launched its third batch of 60 mini-satellites into orbit, part of its plans to build a giant constellation of thousands of spacecraft that will form a global broadband internet system. A live broadcast by SpaceX showed a Falcon 9 rocket taking off without incident from Cape Canaveral, Florida at 9:19pm (0219 GMT Tuesday). The satellites are set to release about one hour after takeoff, bringing the total number of satellites that are part of the US company's Starlink network to just under 180. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Wanted: Girlfriend to fly to the Moon with Japanese billionaire

'Space unites us': First Iranian-American NASA astronaut reaches for stars

From exoskeletons to education at CES

Second Spaceship in Virgin Galactic's fleet completes major build milestone

Elon Musk praises results after SpaceX intentionally blows up Starship tank

Collaboration on development of next-generation rapid launch space systems

Arianespace's first launch in 2020, using Ariane 5 at the service of Eutelsat and ISRO

First NASA Artemis Rocket Core Stage loaded on Pegasus Barge

Mars loses water to space during warm, stormy seasons

LZH's MOMA laser ready for the flight to Mars

Martian water could disappear faster than expected

Mars 2020 rover to seek ancient life, prepare human missions

China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

Satellite constellations harvest energy for near-total global coverage

ESA and EDA joint research: advancing into the unknown

SpaceX launches another 60 satellite for Starlink constellation

SpaceX launches third batch of Starlink satellites

Ultrasound can make stronger 3D-printed alloys

NUS scientists create world's first monolayer amorphous film

Penn shows giving entire course of radiation treatment in less than a second is feasible

Randomness opens the gates to the land of attophotography

Telescope upgrade, move will aid in search for exoplanets

Goldilocks stars are best places to look for life

A new tool for 'weighing' unseen planets

SDSU astronomers pinpoint two new 'Tatooine' planetary systems

Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.