. 24/7 Space News .
EARTH OBSERVATION
Model offers clearer understanding of factors that influence monsoon behavior
by Staff Writers
Beijing, China (SPX) Dec 13, 2019

The Tibetan Plateau plays an important role in regulating synoptical and climate variations over East Asia.

Monsoons can have a significant impact on human populations all around the world, bringing heavy rainfall associated with flooding and mudslides that can damage crops and pose a health and safety risk. In countries such as India, monsoons also provide a vital source of water needed for growing crops.

Being able to accurately forecast monsoons, as well as predict climate changes that drive these events, is of great benefit to humanity as it can help communities to better prepare and plan, which can improve safety and reduce economic losses. A team of researchers from the Chinese Academy of Sciences have conducted a series of model perturbation experiments, producing datasets that can help improve these predictions.

The model design, experiments and datasets from the simulations are described in a data description paper recently published on December 10, 2019 in Advances in Atmospheric Sciences.

A monsoon is a seasonal change in atmospheric circulation or prevailing wind direction that is associated with corresponding changes in precipitation resulting from uneven heating of sea and land surfaces. Monsoons blow from cold regions to warm regions, and are responsible for wet and dry seasons in the tropics.

However, because external factors such as the location of land masses and oceans can influence regional wind and rainfall patterns, the characteristics and behavior of monsoons vary from region to region. The South Asian monsoon, for example, is particularly strong as the Himalayas and Tibetan-Iranian Plateau prevent dry air from the north flowing to the humid monsoon region in India and southern Asia.

The Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model datasets prepared for the sixth phase of the Coupled Model Intercomparison Project (CMIP6) Global Monsoons Model Intercomparison Project (GMMIP) provide a valuable tool to assess sea surface temperature trends and its influence on monsoon circulation and precipitation patterns, while also providing a clearer understanding of how topography can affect the global monsoon system as it passes over landscapes with high altitudes.

"These datasets are useful especially for understanding the changes of sub-seasonal climate signals forced by the Tibetan-Iranian Plateau," said lead author, Bian He, a research scientist at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, in Beijing, China.

The global monsoon system is made up of several sub-monsoon systems, including the Asian, Australian, northern and southern African, North American and South American monsoons, each with their own unique characteristics and behaviors relative to when and where they occur. These differences have proved challenging for current climate models, primarily because we do not yet fully understand the complex atmosphere-ocean-land interactions that drive monsoon systems, which in turn are influenced by external forces and internal variabilities.

Topography can affect weather, for example, by forcing air upwards which can cause disturbances in the weather system. As the air rises, changes in pressure and temperature can result in precipitation - a phenomenon known as the orographic effect or orographic precipitation. While it is acknowledged that topography can influence monsoons, there is still much debate regarding the direct impact that global highlands have on monsoon circulation and precipitation.

"We provided three ensemble simulations of long-term changes of the global monsoon under observed Sea Surface Temperature (SST) and Sea ice forcing to reduce uncertainty from the initial method," explained He, "We also provided high time frequency outputs in GMMIP Tier-3 experiments for better understanding the role of the Tibetan Plateau in the global monsoon system by transient processes."

This is one of two papers the authors contributed to the IPCC CMIP6 world climate research programme. The companion paper describes the outputs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic, Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project (CMIP6).

"Our next step is to consider air-sea interactions in the simulation, as this is also an important factor in understanding global monsoons and associated topographical effects," said He. "Our ultimate goal is to improve model simulations on monsoon behavior in order to more accurately forecast monsoons."

Research paper


Related Links
Institute of Atmospheric Physics, Chinese Academy of Sciences
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
One-third of recent global methane increase comes from tropical Africa
Brussels, Belgium (SPX) Dec 12, 2019
Concentrations of methane, a greenhouse gas about 28 times more potent than carbon dioxide, have risen steadily in Earth's atmosphere since 2007. Although several potential explanations, including an increase in methane emissions from the tropics, could account for this upsurge, due to a lack of regional data scientists have been unable to pinpoint the source. Now a study published in the European Geosciences Union (EGU) journal Atmospheric Chemistry and Physics uses satellite data to determine th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Child's play: Coding booms among Chinese children

ISS-bound Progress MS-13 lifts off from Baikonur Cosmodrome

SMAC in the DARQ: the tech trends shaping 2020

NASA awards UbiQD 2nd contract to "Tailor the Solar Spectrum for Enhanced Crop Yield for Space Missions"

EARTH OBSERVATION
SpaceX Dragon heads to ISS with science payload and general cargo

Aerojet Rocketdyne completes tests of subscale OpFires propulsion system

Aerojet Rocketdyne Huntsville Site Set for Large Solid Rocket Motor Production

NASA will push exploration rocket test hardware beyond its limits

EARTH OBSERVATION
Solving fossil mystery could aid quest for ancient life on Mars

Global storms on Mars launch dust towers into the sky

Glaciers as landscape sculptors - the mesas of Deuteronilus Mensae

NASA updates Mars 2020 Mission Environmental Review

EARTH OBSERVATION
China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

EARTH OBSERVATION
SpaceChain sends blockchain tech to ISS

Russian Soyuz-ST to launch OneWeb communications satellites in 2020

European Space Agency agrees record budget to meet new challenges

Europe faces up to new space challenges

EARTH OBSERVATION
Tiny magnetic particles enable new material to bend, twist, and grab

Bio-inspired hydrogel can rapidly switch to rigid plastic

Life of a foam

Liquid flow is influenced by a quantum effect in water

EARTH OBSERVATION
Meteorite-loving microorganism

Astronomers propose a novel method of finding atmospheres on rocky worlds

Animal embryos evolved before animals

Scientists sequence genome of devil worm, deepest-living animal

EARTH OBSERVATION
Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa

NASA finds Neptune moons locked in 'Dance of Avoidance'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.