. 24/7 Space News .
TECH SPACE
Engineers repurpose photography technique to make stretchy, color-changing films
by Jennifer Chu for MIT News
Boston MA (SPX) Aug 03, 2022

MIT researchers have developed a scalable manufacturing technique that gives materials "structural color" - color that arises as a consequence of a material's microscopic structure, rather than from chemical additives or dyes. Here, a penny's relief is thrown into vibrant colors when pressed into a new material developed at MIT (left). The material's colors are then converted to a map of compressive stresses (right).

Imagine stretching a piece of film to reveal a hidden message. Or checking an arm band's color to gauge muscle mass. Or sporting a swimsuit that changes hue as you do laps. Such chameleon-like, color-shifting materials could be on the horizon, thanks to a photographic technique that's been resurrected and repurposed by MIT engineers.

By applying a 19th-century color photography technique to modern holographic materials, an MIT team has printed large-scale images onto elastic materials that when stretched can transform their color, reflecting different wavelengths as the material is strained.

The researchers produced stretchy films printed with detailed flower bouquets that morph from warm to cooler shades when the films are stretched. They also printed films that reveal the imprint of objects such as a strawberry, a coin, and a fingerprint.

The team's results provide the first scalable manufacturing technique for producing detailed, large-scale materials with "structural color" - color that arises as a consequence of a material's microscopic structure, rather than from chemical additives or dyes.

"Scaling these materials is not trivial, because you need to control these structures at the nanoscale," says Benjamin Miller, a graduate student in MIT's Department of Mechanical Engineering. "Now that we've cleared this scaling hurdle, we can explore questions like: Can we use this material to make robotic skin that has a human-like sense of touch? And can we create touch-sensing devices for things like virtual augmented reality or medical training? It's a big space we're looking at now."

The team's results appear today in Nature Materials. Miller's co-authors are MIT undergraduate Helen Liu, and Mathias Kolle, associate professor of mechanical engineering at MIT.

Hologram happenstance
Kolle's group develops optical materials that are inspired by nature. The researchers have studied the light-reflecting properties in mollusc shells, butterfly wings, and other iridescent organisms, which appear to shimmer and shift their color due to microscopic surface structures. These structures are angled and layered to reflect light like miniature colored mirrors, or what engineers refer to as Bragg reflectors.

Groups including Kolle's have sought to replicate this natural, structural color in materials using a variety of techniques. Some efforts have produced small samples with precise nanoscale structures, while others have generated larger samples, but with less optical precision.

As the team writes, "an approach that offers both [microscale control and scalability] remains elusive, despite several potential high-impact applications."

While puzzling over how to resolve this challenge, Miller happened to visit the MIT Museum, where a curator talked him through an exhibit on holography, a technique that produces three-dimensional images by superimposing two light beams onto a physical material.

"I realized what they do in holography is kind of the same thing that nature does with structural color," Miller says.

That visit spurred him to read up on holography and its history, which led him back to the late 1800s, and Lippmann photography - an early color photography technique invented by Franco-Luxembourgish physicist Gabriel Lippmann, who later won the Nobel Prize in Physics for the technique.

Lippmann generated color photos by first setting a mirror behind a very thin, transparent emulsion - a material that he concocted from tiny light-sensitive grains. He exposed the setup to a beam of light, which the mirror reflected back through the emulsion. The interference of the incoming and outgoing light waves stimulated the emulsion's grains to reconfigure their position, like many tiny mirrors, and reflect the pattern and wavelength of the exposing light.

Using this technique, Lippmann projected structurally colored images of flowers and other scenes onto his emulsions, though the process was laborious. It involved hand-crafting the emulsions and waiting for days for the material to be sufficiently exposed to light. Because of these limitations, the technique largely faded into history.

A modern twist
Miller wondered if, paired with modern, holographic materials, Lippmann photography could be sped up to produce large-scale, structurally colored materials. Like Lippmann's emulsions, current holographic materials consist of light-sensitive molecules that, when exposed to incoming photons, can cross-link to form colored mirrors.

"The chemistries of these modern holographic materials are now so responsive that it's possible to do this technique on a short timescale simply with a projector," Kolle notes.

In their new study, the team adhered elastic, transparent holographic film onto a reflective, mirror-like surface (in this case, a sheet of aluminum). The researchers then placed an off-the-shelf projector several feet from the film and projected images onto each sample, including Lippman-esque bouquets.

As they suspected, the films produced large, detailed images within several minutes, rather than days, vividly reproducing the colors in the original images.

They then peeled the film away from the mirror and stuck it to a black elastic silicone backing for support. They stretched the film and observed the colors change - a consequence of the material's structural color: When the material stretches and thins out, its its nanoscale structures reconfigure to reflect slightly different wavelengths, for instance, changing from red to blue.

The team found the film's color is highly sensitive to strain. After producing an entirely red film, they adhered it to a silicone backing that varied in thickness. Where the backing was thinnest, the film remained red, whereas thicker sections strained the film, causing it to turn blue.

Similarly, they found that pressing various objects into samples of red film left detailed green imprints, caused by, say, the seeds of a strawberry and the wrinkles of a fingerprint.

Interestingly, they could also project hidden images, by tilting the film at an angle with respect to the incoming light when creating the colored mirrors. This tilt essentially caused the material's nanostructures to reflect a red-shifted spectrum of light. For instance, green light used during material exposure and development would lead to red light being reflected, and red light exposure would give structures that reflect infrared - a wavelength that is not visible to humans. When the material is stretched, this otherwise invisible image changes color to reveal itself in red.

"You could encode messages in this way," Kolle says.

Overall, the team's technique is the first to enable large-scale projection of detailed, structurally colored materials.

"The beauty of this work is the fact that they have developed a simple yet extremely effective way to produce large-area photonic structures," says Sylvia Vignolini, professor of chemistry and bio-materials at the University of Cambridge, who was not involved in the study. "This technique could be game-changing for coatings and packaging, and also for wearables."

Indeed, Kolle notes that the new color-changing materials are easily integrated into textiles.

"Lippmann's materials wouldn't have allowed him to even produce a Speedo," he says. "Now we could make a full leotard."

Beyond fashion and textiles, the team is exploring applications such as color-changing bandages, for use in monitoring bandage pressure levels when treating conditions such as venous ulcers and certain lymphatic disorders.

Research Report:"Scalable optical manufacture of dynamic structural colour in stretchable materials"


Related Links
Laboratory for Biologically Inspired Photonic Engineering
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Magnetic quantum material helps probe next-gen information technologies
Oak Ridge TN (SPX) Aug 03, 2022
Scientists at the Department of Energy's Oak Ridge National Laboratory used neutron scattering to determine whether a specific material's atomic structure could host a novel state of matter called a spiral spin liquid. By tracking tiny magnetic moments known as "spins" on the honeycomb lattice of a layered iron trichloride magnet, the team found the first 2D system to host a spiral spin liquid. The discovery provides a test bed for future studies of physics phenomena that may drive next-generation ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NewSpace may eliminate sun-synchronous orbits

Blue Origin to launch space tourist flight next week

When Russia leaves, what's next for the International Space Station?

Space Perspective unveils patented capsule design

TECH SPACE
SpaceX rocket fueled for launch this week to send Korean mission to moon

CAA launches consultation on UK space launch from Cornwall

NASA prepares for Space Launch System rocket services contract

Marine Management Organisation opens consultation on Virgin Orbit launch site

TECH SPACE
Ten Earth Years Later On Mars Sols 3553-3554

Images of EDL Debris

Rocky road ahead still not the good kind: Sols 3548-3550

Through the Pass We Go Sols 3551-3552

TECH SPACE
Reusable experimental spacecraft put into orbit

China launches six new satellites

China's Tianzhou-3 cargo craft re-enters atmosphere under control

Researchers: Chinese rocket stage to hit Earth in uncontrolled descent

TECH SPACE
Lockheed Martin doubles Venture Capital Fund To $400M

Sidus Space selects AWS for LizzieSat constellation

Have Canadians lost touch with space industry asks research report

Australians see space more as a danger than a benefit: Report

TECH SPACE
A better way to quantify radiation damage in materials

Magnetic quantum material helps probe next-gen information technologies

Engineers repurpose photography technique to make stretchy, color-changing films

Scientists have created optical fibers with unusual properties

TECH SPACE
New research on the emergence of the first complex cells challenges orthodoxy

Super-earth skimming habitable zone of red dwarf

How do collisions of rocks with planets help the planets evolve?

Lava caves of Hawaii Island contain thousands of unknown bacterial species

TECH SPACE
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.