. 24/7 Space News .
TECH SPACE
Magnetic quantum material helps probe next-gen information technologies
by Staff Writers
Oak Ridge TN (SPX) Aug 03, 2022

Neutron scattering revealed spin correlations of iron trichloride. An artist's depiction interprets the scattering that provides evidence of a spiral spin liquid state.

Scientists at the Department of Energy's Oak Ridge National Laboratory used neutron scattering to determine whether a specific material's atomic structure could host a novel state of matter called a spiral spin liquid. By tracking tiny magnetic moments known as "spins" on the honeycomb lattice of a layered iron trichloride magnet, the team found the first 2D system to host a spiral spin liquid.

The discovery provides a test bed for future studies of physics phenomena that may drive next-generation information technologies. These include fractons, or collective quantized vibrations that may prove promising in quantum computing, and skyrmions, or novel magnetic spin textures that could advance high-density data storage.

"Materials hosting spiral spin liquids are particularly exciting due to their potential to be used to generate quantum spin liquids, spin textures and fracton excitations," said ORNL's Shang Gao, who led the study published in Physical Review Letters.

A long-held theory predicted that the honeycomb lattice can host a spiral spin liquid - a novel phase of matter in which spins form fluctuating corkscrew-like structures.

Yet, until the present study, experimental evidence of this phase in a 2D system had been lacking. A 2D system comprises a layered crystalline material in which interactions are stronger in the planar than in the stacking direction.

Gao identified iron trichloride as a promising platform for testing the theory, which was proposed more than a decade ago. He and co-author Andrew Christianson of ORNL approached Michael McGuire, also of ORNL, who has worked extensively on growing and studying 2D materials, asking if he would synthesize and characterize a sample of iron trichloride for neutron diffraction measurements.

Like 2D graphene layers exist in bulk graphite as honeycomb lattices of pure carbon, 2D iron layers exist in bulk iron trichloride as 2D honeycomb layers. "Previous reports hinted that this interesting honeycomb material could show complex magnetic behavior at low temperatures," McGuire said.

"Each honeycomb layer of iron has chlorine atoms above and below it, making chlorine-iron-chlorine slabs," McGuire said.

"The chlorine atoms on top of one slab interact very weakly with the chlorine atoms on the bottom of the next slab through van der Waals bonding. This weak bonding makes materials like this easily peeled apart into very thin layers, often down to a single slab. This is useful for developing devices and understanding the evolution of quantum physics from three dimensions to two dimensions."

In quantum materials, electron spins can behave collectively and exotically. If one spin moves, all react - an entangled state Einstein called "spooky action at a distance." The system stays in a state of frustration - a liquid that preserves disorder because electron spins constantly change direction, forcing other entangled electrons to fluctuate in response.

The first neutron diffraction studies of ferric chloride crystals were performed at ORNL 60 years ago. Today, ORNL's extensive expertise in materials synthesis, imaging, neutron scattering, theory, simulation and computation enables pioneering explorations of magnetic quantum materials that drive development of next-generation technologies for information security and storage.

Mapping spin movements in the spiral spin liquid was made possible by experts and tools at the Spallation Neutron Source and the High Flux Isotope Reactor, DOE Office of Science user facilities at ORNL. ORNL co-authors were essential for the success of the neutron scattering experiments: Clarina dela Cruz, who led experiments using HFIR's POWDER diffractometer; Yaohua Liu, who led experiments employing SNS's CORELLI spectrometer; Matthias Frontzek, who led experiments engaging HFIR's WAND2 diffractometer; Matthew Stone, who led experiments operating SNS's SEQUOIA spectrometer; and Douglas Abernathy, who led experiments working SNS's ARCS spectrometer.

"The neutron scattering data from our measurements at SNS and HFIR provided compelling evidence of a spiral spin liquid phase," Gao said.

"The neutron scattering experiments measured how the neutrons exchange energy and momentum with the sample, allowing the magnetic properties to be inferred," said co-author Matthew Stone.

He described the magnetic structure of a spiral spin liquid: "It looks like a topographic map of a group of mountains with a bunch of rings going outward. If you were to walk along a ring, all spins would point in the same direction. But if you walk outward and cross different rings, you're going to see those spins begin to rotate about their axes. That's the spiral."

"Our study shows that the concept of a spiral spin liquid is viable for the broad class of honeycomb lattice materials," said co-author Andrew Christianson. "It gives the community a new route to explore spin textures and novel excitations, such as fractons, that then may be used in future applications, such as quantum computing."

Research Report:"Spiral Spin Liquid on a Honeycomb Lattice"


Related Links
Oak Ridge National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Emerging technology could help extract lithium from new sources
Chicago IL (SPX) Jul 27, 2022
As more drivers adopt plug-in hybrid and electric vehicles, the demand for lithium-ion batteries will continue to explode over the next decade. But processes for extracting lithium can be time-consuming and chemical-intensive, and traditional sources-including brine and hard rock-could ultimately be depleted. Scientists and engineers are now looking to unconventional water sources, including oil- and gas-produced water, geothermal brines, and rejected brines from seawater desalination. But how muc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
ISS tests organisms, materials in space

3 in Blue Origin crew set new world records aboard New Shepard spaceflight

NewSpace may eliminate sun-synchronous orbits

Blue Origin to launch space tourist flight next week

TECH SPACE
J-Space partners with Virgin Orbit to bring sovereign air-launch capability to South Korea

Private rocket company completes third orbital mission

Blue Origin sends first Egyptian and Portuguese nationals to space

Virgin Galactic secures land for new astronaut campus and training facility

TECH SPACE
New Year, New Challenges: Sols 3558-3559

Ten Earth Years Later On Mars Sols 3553-3554

Images of EDL Debris

Rocky road ahead still not the good kind: Sols 3548-3550

TECH SPACE
Reusable experimental spacecraft put into orbit

China launches six new satellites

China's Tianzhou-3 cargo craft re-enters atmosphere under control

Researchers: Chinese rocket stage to hit Earth in uncontrolled descent

TECH SPACE
Spire Global to scale up constellation for HANCOM inSPACE with second satellite

ASTRA announces major new equity facility

As reflective satellites fill the skies, UA students helping astronomers adapt

Slingshot Aerospace acquires Numerica's space division and UK-Based Seradata

TECH SPACE
Building the best zeolite

A better way to quantify radiation damage in materials

Magnetic quantum material helps probe next-gen information technologies

New quantum whirlpools with tetrahedral symmetries discovered in a superfluid

TECH SPACE
New research on the emergence of the first complex cells challenges orthodoxy

Super-earth skimming habitable zone of red dwarf

How do collisions of rocks with planets help the planets evolve?

Lava caves of Hawaii Island contain thousands of unknown bacterial species

TECH SPACE
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.