![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Lausanne, Switzerland (SPX) Sep 24, 2021
Each human being uses, on average, 30 kg of plastic per year. Given that global life expectancy currently stands at approximately 70 years, each person will discard some two metric tons of plastic in his or her lifetime. Multiply that by the number people on earth - which is growing constantly - and the total is staggering. In light of this, Francesco Stellacci, a full professor and head of the Supramolecular Nanomaterials and Interfaces Laboratory at EPFL's School of Engineering, began thinking about whether there was a way to solve the problem of used plastics and recycle it more effectively. Stellacci established a collaboration with Prof. Sebastian J. Maerkl in the Bioengineering Institute at EPFL and they decided to co-advise a PhD student, Simone Giaveri, the team has published its conclusions, based on scientific research, in Advanced Materials. After reviewing the existing plastic-recycling options available, the engineers decided to think up a completely new approach. "When we use biodegradable plastics, the degradation process leaves residue that must be stockpiled or buried. The more land that is allocated for this means the less land available for farming, and there are environmental consequences to take into account as bio-degradation product necessarily change the area's ecosystem," says Stellacci. So how can we come up with a comprehensive solution to the problem of recycling plastics? Part of the answer could very well come from nature itself.
A pearl necklace Each pearl has a different colour, and the colour-sequence determines the string structure and consequently its properties. In nature, protein chains break up into the constituents amino acids and cells put such amino acids back together to form new proteins, that is they create new strings of pearls with a different colour sequence" Giaveri says. In the lab, Giaveri initially attempted to replicate this natural cycle, outside living organisms. "We selected proteins and divided them up into amino acids. We then put the amino acids into a cell-free biological system, that assembled the amino acids back into new proteins with entirely different structures and applications," he explains. For instance, Giaveri and Stellacci successfully transformed silk into a protein used in biomedical technology. "Importantly, when you break down and assemble proteins in this way, the quality of the proteins produced is exactly the same of that of a newly synthesized protein. Indeed, you are building something new," Stellacci says.
Plastic is a polymer, too Furthermore, we have no efficient way to assemble synthetic polymers from different colour pearls in a way that controls their sequence." He would also point out, however, that this new approach to plastic recycling appears to be the only one that truly adheres to the postulate of a circular economy. "In the future, sustainability will entail pushing upcycling to the extreme, throwing a lot of different object together and recycling the mixture to produce every day a different new material. Nature already does this," he concludes.
Research Report: "Nature-inspired Circular-economy Recycling (NaCRe) for Proteins: Proof of Concept"
![]() ![]() Researchers find a new way to control magnets Boston MA (SPX) Sep 21, 2021 Most of the magnets we encounter daily are made of "ferromagnetic" materials. The north-south magnetic axes of most atoms in these materials are lined up in the same direction, so their collective force is strong enough to produce significant attraction. These materials form the basis for most of the data storage devices in today's high-tech world. Less common are magnets based on ferrimagnetic materials, with an "i." In these, some of the atoms are aligned in one direction, but others are aligned ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |