. 24/7 Space News .
TIME AND SPACE
Draw-your-own electrodes set to speed up development of micro detection devices
by Staff Writers
London, UK (SPX) Nov 27, 2018

This is an Iron-Man-shaped electrode printed using the technique.

Miniature devices for sensing biological molecules could be developed quicker thanks to a rapid prototyping method. Devices that sense and measure biological molecules important for healthcare, such as detecting diseases in blood samples, rely on electrodes to carry out their tasks.

New generations of these devices are being made that manipulate molecules or work with smaller concentrations of molecules, for example detecting rare cancer cells in blood samples.

These require intricate patterning of minute electrodes. Getting the right pattern is key, but building prototypes of different electrode designs can be expensive and time-consuming, often requiring specialist equipment and expertise.

Now, researchers at Imperial College London, have created a method that allows intricate electrode patterns to be printed in community labs and hackspaces at a fraction of the time and cost. The details of their method are published in Scientific Reports.

Lead researcher Dr Ali Salehi-Reyhani, from the Department of Chemistry at Imperial, said: "With our method researchers and startups can more easily design and develop analytical devices, even when they need electronics that can't be bought off-the-shelf.

"Community hackspaces are great for democratising science, allowing more people to try out new technology solutions. We hope this method will allow bioelectronics to benefit from that ecosystem of hackers getting hands-on with problems and solutions in healthcare."

The method allows researchers to design electrode patterns on computers before printing them off using a laser-cutting printer. The cavities are then filled with metal using microfluidic techniques - using the science of how fluids move through confined spaces.

In this way, researchers could print several sheets of electrodes, each with a slightly different design, allowing them to be tested in rapid succession to find the best design. Previously, designs may have had to be sent away to be manufactured, taking weeks or even months to arrive at the best design, but now the whole process can be reduced to a matter of days.

The team at fabriCELL, a centre of excellence in artificial cell science run by Imperial College London and King's College London, are now using the technique to prototype devices for manipulating and analysing cells.

They say the technique could be used to speed up the development of flexible wearable devices, such as skin patches that monitor health signals and devices, and devices that could be used in hospitals or GP surgeries, such as ones that can quickly distinguish between viral and bacterial infections with just a drop of blood.

Research paper


Related Links
Imperial College London
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Researchers defy 19th-century law of physics in 21st century boost for energy efficiency
Sussex UL (SPX) Nov 23, 2018
Research led by a University of Sussex scientist has turned a 156-year-old law of physics on its head in a development which could lead to more efficient recharging of batteries in cars and mobile phones. Dr Jordi Prat-Camps, a research fellow at the University of Sussex, has for the first time demonstrated that the coupling between two magnetic elements can be made extremely asymmetrical. Working with colleagues from the Austrian Academy of Sciences and University of Innsbruck, Dr Prat-Camps' res ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
First supply trip to space since Soyuz failure poised to launch

Space-inspired speed breeding for crop improvement

Zero G Kitchen prepares to launch its first appliance to Space

Poor weather delays US space cargo launch to Saturday

TIME AND SPACE
DLR is developing a reusable rocket engine for launching small satellites

Portugal builds spaceport in the Azores

Rocket Lab announces $140 Million in new funding

SpaceX plans to launch 71 satellites at once

TIME AND SPACE
NASA wants people on Mars within 25 years

Anxiety at NASA as InSight spacecraft nears Red Planet

Overflowing crater lakes carved canyons across Mars

NASA picks ancient Martian river delta for 2020 rover touchdown

TIME AND SPACE
China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

China's space programs open up to world

China's commercial aerospace companies flourishing

TIME AND SPACE
Space technology company to set up high-volume production of ultra-powerful LEO satellite platforms

SpaceX gets nod to put 12,000 satellites in orbit

Extended life for ESA's science missions

ESA's 25 years of telecom: the beginning

TIME AND SPACE
How to melt gold at room temperature

Researchers create new 'smart' material with potential biomedical, environmental uses

BASF bets on China to power growth

Singapore probes embattled Noble Group for 'false statements'

TIME AND SPACE
New database to archive amateur astronomer exoplanet data

A cold Super-Earth just 6 light years away at Barnard's Star

New Arecibo message challenge announced

Super-earth discovered orbiting the sun's famous stellar neighbor

TIME AND SPACE
Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.