. 24/7 Space News .
TIME AND SPACE
Researchers defy 19th-century law of physics in 21st century boost for energy efficiency
by Staff Writers
Sussex UL (SPX) Nov 23, 2018

Dr Jordi Prat-Camps with the model of his experiment

Research led by a University of Sussex scientist has turned a 156-year-old law of physics on its head in a development which could lead to more efficient recharging of batteries in cars and mobile phones.

Dr Jordi Prat-Camps, a research fellow at the University of Sussex, has for the first time demonstrated that the coupling between two magnetic elements can be made extremely asymmetrical. Working with colleagues from the Austrian Academy of Sciences and University of Innsbruck, Dr Prat-Camps' research rips up the physics rule book by showing it is possible to make one magnet connect to another without the connection happening in the opposite direction.

The findings run contrary to long-established beliefs of magnetic coupling, which emerge from the four Maxwell equations dating back to the seminal works of Michael Faraday and James Clerk Maxwell in the 19th century.

Dr Prat-Camps said: "We have created the first device that behaves like a diode for magnetic fields. Electric diodes are so crucial that none of the existing electronic technologies such as microchips, computers or mobile phones would be possible without them. If our result for magnetic fields would have one millionth of the same impact as the developments in electric diodes, it would be a hugely impactful success. The creation of such a diode opens up a lot of new possibilities for other scientists and technicians to explore. Thanks to our discovery we think it might be possible to improve and the performance of wireless power transfer technologies to improve the efficiency of recharging phones, laptops and even cars."

Dr Prat-Camps' breakthrough builds on research he and colleagues have carried out over a number of years focusing on the control and manipulation of magnetic fields by the use of metamaterials. Recently Dr Prat-Camps and his collaborators have developed new tools to control magnetism including magnetic undetectability cloaks, magnetic concentrators and wormholes.

As other researchers working with other kinds of metamaterials explored the possibility of breaking reciprocity for light and sound waves, Dr Prat-Camps explored whether the same challenge could be applied to magnetic fields.

After several unsuccessful attempts to break magnetic reciprocity, the team decided to try using an electrical conductor in movement. By solving Maxwell's equations analytically, the researchers very quickly demonstrated that not only could reciprocity be broken down but that, the coupling could be made maximally asymmetric, whereby the coupling from A to B would be different from zero but from B to A it would be exactly zero. Having shown that total unidirectional coupling was possible theoretically, the team designed and built a proof-of-concept experiment which confirmed their findings.

Dr Prat-Camps said: "The magnetic coupling between magnets or circuits is something extremely well-known. It dates back to the seminal works of Faraday and Maxwell and it is deeply embedded into the four Maxwell equations that describe all electromagnetic phenomena. A vast majority of the technologies we rely on today are based on magnetic coupling including motors, transformers, low-frequency antennas and wireless power transfer devices. As far as we know, nobody before us thought to ask whether this symmetry could be broken and to what extent."

The researchers are hopeful the findings could have wide implications. Technology reliant on magnetically-based wireless power transfer includes the vast majority of everyday electronic devices like mobile phones and laptops.

Innsbruck physicists Oriol Romero-Isart and Gerhard Kirchmair said: "If the coupling between coils is symmetric, some part of the energy can also flow in the opposite direction which can greatly reduce the efficiency of the transfer. By using a magnetic diode to prevent this backwards flow, the efficiency of the transfer could be greatly enhanced."

Research paper


Related Links
University of Sussex
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Physicists discover new way of resonance tuning for nonlinear optics
Saint Petersburg, Russia (SPX) Nov 16, 2018
A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms". Asymmetry of meta-atoms results in high-quality (high Q) resonances in the transmittance spectra of metasurfaces. Such resonances are capable of multiple amplification of external signals. By manipulating the asymmetry, scientists were able to control the resonances and thus an o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
First supply trip to space since Soyuz failure poised to launch

Poor weather delays US space cargo launch to Saturday

Orion recovery team: ready to 'rock and roll'

Canadian voice of Hal in '2001: A Space Odyssey' dies

TIME AND SPACE
SpaceX plans to launch 71 satellites at once

Cygnus cargo ship launches to ISS

SPARC Research awarded contract for hypersonic airbreathing weapon propulsion

Russia's Cargo Craft Blasts Off to Station for Sunday Delivery

TIME AND SPACE
NASA wants people on Mars within 25 years

Overflowing crater lakes carved canyons across Mars

How NASA will know when InSight touches down on Mars

For arid, Mars-like desert, rain brings death

TIME AND SPACE
China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

China's space programs open up to world

China's commercial aerospace companies flourishing

TIME AND SPACE
Space technology company to set up high-volume production of ultra-powerful LEO satellite platforms

Extended life for ESA's science missions

ESA's 25 years of telecom: the beginning

ESA's space vision presented at Paris Peace Forum

TIME AND SPACE
Electronic skin points the way north

BASF bets on China to power growth

Singapore probes embattled Noble Group for 'false statements'

A new lead on a 50-year-old radiation damage mystery

TIME AND SPACE
A cold Super-Earth just 6 light years away at Barnard's Star

New Arecibo message challenge announced

Super-earth discovered orbiting the sun's famous stellar neighbor

Laser tech could be fashioned into Earth's 'porch light' to attract alien astronomers

TIME AND SPACE
Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.