. 24/7 Space News .
TECH SPACE
Researchers create new 'smart' material with potential biomedical, environmental uses
by Staff Writers
Providence RI (SPX) Nov 23, 2018

Brown University researchers have created a hybrid material out of seaweed-derived alginate and the nanomaterial graphene oxide. The 3-D printing technique used to make the material enables the creation of intricate structures, including the one above, which mimics that atomic lattice a graphene.

Brown University researchers have shown a way to use graphene oxide (GO) to add some backbone to hydrogel materials made from alginate, a natural material derived from seaweed that's currently used in a variety of biomedical applications. In a paper published in the journal Carbon, the researchers describe a 3-D printing method for making intricate and durable alginate-GO structures that are far stiffer and more fracture resistant that alginate alone.

"One limiting factor in the use of alginate hydrogels is that they're very fragile - they tend to fall apart under mechanical load or in low salt solutions," said Thomas Valentin, a Ph.D. student in Brown's School of Engineering who led the work. "What we showed is by including graphene oxide nanosheets, we can make these structures much more robust."

The material is also capable of becoming stiffer or softer in response to different chemical treatments, meaning it could be used to make "smart" materials that are able to react to their surroundings in real time, the research shows. In addition, alginate-GO retains alginate's ability to repel oils, giving the new material potential as a sturdy antifouling coating.

The 3-D printing method used to make the materials is known as stereolithography. The technique uses an ultraviolet laser controlled by a computer-aided design system to trace patterns across the surface of a photoactive polymer solution.

The light causes the polymers to link together, forming solid 3-D structures from the solution. The tracing process is repeated until an entire object is built layer-by-layer from the bottom up. In this case the polymer solution was made using sodium alginate mixed with sheets of graphene oxide, a carbon-based material that forms one-atom-thick nanosheets that are stronger pound-for-pound than steel.

One advantage to the technique is that the sodium alginate polymers link through ionic bonds. The bonds are strong enough to hold the material together, but they can be broken by certain chemical treatments. T

hat gives the material the ability to respond dynamically to external stimuli. Previously, the Brown researchers showed that this "ionic crosslinking" can be used to create alginate materials that degrade on demand, rapidly dissolving when treated with a chemical that sweeps away ions from the material's internal structure.

For this new study, the researchers wanted to see how graphene oxide might change mechanical properties of alginate structures. They showed that alginate-GO could be made twice as stiff as alginate alone, and far more resistant to failure through cracking.

"The addition of graphene oxide stabilizes the alginate hydrogel with hydrogen bonding," said Ian Y. Wong, an assistant professor of engineering at Brown and the paper's senior author. "We think the fracture resistance is due to cracks having to detour around the interspersed graphene sheets rather than being able to break right though homogeneous alginate."

The extra stiffness enabled the researchers to print structures that had overhanging parts, which would have been impossible using alginate alone. Moreover, the increased stiffness didn't prevent alginate-GO also from responding to external stimuli like alginate alone can.

The researchers showed that by bathing the materials in a chemical that removes its ions, the materials swelled up and became much softer. The materials regained their stiffness when ions were restored through bathing in ionic salts. Experiments showed that the materials' stiffness could be tuned over a factor of 500 by varying their external ionic environment.

That ability to change its stiffness could make alginate-GO useful in a variety of applications, the researchers say, including dynamic cell cultures.

"You could imagine a scenario where you can image living cells in a stiff environment and then immediately change to a softer environment to see how the same cells might respond," Valentin said. That could be useful in studying how cancer cells or immune cells migrate through different organs throughout the body.

And because alginate-GO retains the powerful oil-repellant properties of pure alginate, the new material could make an excellent coating to keep oil and other grime from building up on surfaces.

In a series of experiments, the researchers showed that a coating of alginate-GO could keep oil from fouling the surface of glass in highly saline conditions. That could make alginate-GO hydrogels useful for coatings and structures used in marine settings, the researchers say.

"These composite materials could be used as a sensor in the ocean that can keep taking readings during an oil spill, or as an antifouling coating that helps to keep ship hulls clean," Wong said. The extra stiffness afforded by the graphene would make such materials or coatings far more durable than alginate alone.

The researchers plan to continue experimenting with the new material, looking for ways to streamline its production and continue to optimize its properties.

Research paper


Related Links
Brown University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Singapore probes embattled Noble Group for 'false statements'
Singapore (AFP) Nov 20, 2018
Singapore said Tuesday it is investigating Noble Group for making suspected "false and misleading" financial statements, the latest trouble to hit the embattled commodities trader. Once one of the world's top commodity trading houses, Noble is struggling to stay afloat after shareholders backed a $3.5 billion restructuring deal that snatched it from the jaws of collapse following allegations by a research firm of irregular accounting practices. It has sold off billions of dollars worth of assets ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
First supply trip to space since Soyuz failure poised to launch

Poor weather delays US space cargo launch to Saturday

Orion recovery team: ready to 'rock and roll'

Canadian voice of Hal in '2001: A Space Odyssey' dies

TECH SPACE
SpaceX plans to launch 71 satellites at once

Cygnus cargo ship launches to ISS

SPARC Research awarded contract for hypersonic airbreathing weapon propulsion

Russia's Cargo Craft Blasts Off to Station for Sunday Delivery

TECH SPACE
NASA wants people on Mars within 25 years

Overflowing crater lakes carved canyons across Mars

How NASA will know when InSight touches down on Mars

For arid, Mars-like desert, rain brings death

TECH SPACE
China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

China's space programs open up to world

China's commercial aerospace companies flourishing

TECH SPACE
Space technology company to set up high-volume production of ultra-powerful LEO satellite platforms

Extended life for ESA's science missions

ESA's 25 years of telecom: the beginning

ESA's space vision presented at Paris Peace Forum

TECH SPACE
Electronic skin points the way north

BASF bets on China to power growth

Singapore probes embattled Noble Group for 'false statements'

A new lead on a 50-year-old radiation damage mystery

TECH SPACE
A cold Super-Earth just 6 light years away at Barnard's Star

New Arecibo message challenge announced

Super-earth discovered orbiting the sun's famous stellar neighbor

Laser tech could be fashioned into Earth's 'porch light' to attract alien astronomers

TECH SPACE
Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.